Mitochondrial transcription: lessons from mouse models

Biochim Biophys Acta. Sep-Oct 2012;1819(9-10):961-9. doi: 10.1016/j.bbagrm.2011.11.001. Epub 2011 Nov 18.


Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ~16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • DNA, Mitochondrial* / genetics
  • DNA, Mitochondrial* / metabolism
  • Gene Expression Regulation
  • Mice
  • Mice, Knockout*
  • Mitochondria* / genetics
  • Mitochondria* / metabolism
  • Mitochondrial Proteins / genetics*
  • Mitochondrial Proteins / metabolism
  • Oxidative Phosphorylation
  • Protein Biosynthesis
  • RNA, Ribosomal / chemistry
  • RNA, Ribosomal / genetics
  • Transcription Factors / genetics*
  • Transcription Factors / metabolism
  • Transcription, Genetic*


  • DNA, Mitochondrial
  • Mitochondrial Proteins
  • RNA, Ribosomal
  • Transcription Factors
  • mTERF protein, mouse