Development of a label-free and innovative approach based on surface plasmon resonance biosensor for on-site detection of infectious bursal disease virus (IBDV)

Biosens Bioelectron. 2012 Jan 15;31(1):475-9. doi: 10.1016/j.bios.2011.11.019. Epub 2011 Nov 20.

Abstract

An innovative, specific and label-free detection approach based on optical surface plasmon resonance (SPR) was developed and employed in the development of a rapid and quantitative bioanalyzer for detecting infectious bursal disease virus (IBDV) in the field. A unique bioanalyzer based on this approach was established which consists of a micro-flow cell, a temperature regulator, an integrated biosensor, an optical platform, an electronic control unit incorporated into a photoelectric conversion device, and a universal serial bus (USB) interface circuit board. The procedure for detecting IBDV was systematically described, and experimentally validated. The self-assembly technology was used to make the IBDmAb adhere to the surface of the sensor chip by a bifunctional cross-linker. By this approach there exhibited a linear relationship between the IBDV concentrations and the corresponding responses in the range of dilution factors from 100 to 1600 with R(2) 0.97982. We were able to detect 400-fold diluted IBDV using this biochip repeatedly with a calculated relative standard deviation (RSD) of 3.6%. We also showed that the detection limit of the SPR biosensor biochip was around 1/18 of the detection limit of the IBDV diagnostic strip. Satisfactory recoveries were obtained from the recovery test. The approach presented here was shown to have great potential to be used in the IBDV epidemic regions and hence help to promote the effective implementation of sound control strategies against IBDV.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques / instrumentation*
  • Equipment Design
  • Equipment Failure Analysis
  • Infectious bursal disease virus / isolation & purification*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Staining and Labeling
  • Surface Plasmon Resonance / instrumentation*
  • Viral Load / instrumentation*