Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics

Magn Reson Med. 2012 Sep;68(3):912-22. doi: 10.1002/mrm.23286. Epub 2011 Dec 2.


Normal aging is associated with diminished brain perfusion measured as cerebral blood flow (CBF), but previously it is difficult to accurately measure various aspects of perfusion hemodynamics including: bolus arrival times and delays through small arterioles, expressed as arterial-arteriole transit time. To study hemodynamics in greater detail, volumetric arterial spin labeling MRI with variable postlabeling delays was used together with a distributed, dual-compartment tracer model. The main goal was to determine how CBF and other perfusion hemodynamics vary with aging. Twenty cognitive normal female and 15 male subjects (age: 23-84 years old) were studied at 4 T. Arterial spin labeling measurements were performed in the posterior cingulate cortex, precuneus, and whole brain gray matter. CBF declined with advancing age (P < 0.001). Separately from variations in bolus arrival times, arterial-arteriole transit time increased with advancing age (P < 0.01). Finally, women had overall higher CBF values (P < 0.01) and shorter arterial-arteriole transit time (P < 0.01) than men, regardless of age. The findings imply that CBF and blood transit times are compromised in aging, and these changes together with differences between genders should be taken into account when studying brain perfusion.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Aging / pathology
  • Aging / physiology*
  • Brain / anatomy & histology
  • Brain / physiology*
  • Cerebral Arteries / anatomy & histology
  • Cerebral Arteries / physiology*
  • Cerebrovascular Circulation / physiology*
  • Female
  • Humans
  • Magnetic Resonance Angiography / methods*
  • Male
  • Middle Aged
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Sex Factors
  • Spin Labels


  • Spin Labels