Increased angiogenesis protects against adipose hypoxia and fibrosis in metabolic disease-resistant 11β-hydroxysteroid dehydrogenase type 1 (HSD1)-deficient mice
- PMID: 22158867
- PMCID: PMC3281676
- DOI: 10.1074/jbc.M111.259325
Increased angiogenesis protects against adipose hypoxia and fibrosis in metabolic disease-resistant 11β-hydroxysteroid dehydrogenase type 1 (HSD1)-deficient mice
Abstract
In obesity, rapidly expanding adipose tissue becomes hypoxic, precipitating inflammation, fibrosis, and insulin resistance. Compensatory angiogenesis may prevent these events. Mice lacking the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1(-/-)) have "healthier" adipose tissue distribution and resist metabolic disease with diet-induced obesity. Here we show that adipose tissues of 11βHSD1(-/-) mice exhibit attenuated hypoxia, induction of hypoxia-inducible factor (HIF-1α) activation of the TGF-β/Smad3/α-smooth muscle actin (α-SMA) signaling pathway, and fibrogenesis despite similar fat accretion with diet-induced obesity. Moreover, augmented 11βHSD1(-/-) adipose tissue angiogenesis is associated with enhanced peroxisome proliferator-activated receptor γ (PPARγ)-inducible expression of the potent angiogenic factors VEGF-A, apelin, and angiopoietin-like protein 4. Improved adipose angiogenesis and reduced fibrosis provide a novel mechanism whereby suppression of intracellular glucocorticoid regeneration promotes safer fat expansion with weight gain.
Figures
Similar articles
-
Regulation of 11β-HSD1 expression during adipose tissue expansion by hypoxia through different activities of NF-κB and HIF-1α.Am J Physiol Endocrinol Metab. 2013 May 15;304(10):E1035-41. doi: 10.1152/ajpendo.00029.2013. Epub 2013 Mar 19. Am J Physiol Endocrinol Metab. 2013. PMID: 23512810 Free PMC article.
-
Effects of peroxisome proliferator-activated receptor-alpha and -gamma agonists on 11beta-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue in men.J Clin Endocrinol Metab. 2007 May;92(5):1848-56. doi: 10.1210/jc.2006-2713. Epub 2007 Feb 27. J Clin Endocrinol Metab. 2007. PMID: 17327378 Clinical Trial.
-
HIF-1α in Myeloid Cells Promotes Adipose Tissue Remodeling Toward Insulin Resistance.Diabetes. 2016 Dec;65(12):3649-3659. doi: 10.2337/db16-0012. Epub 2016 Sep 13. Diabetes. 2016. PMID: 27625023
-
Tissue-specific glucocorticoid reactivating enzyme, 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1)--a promising drug target for the treatment of metabolic syndrome.Curr Drug Targets Immune Endocr Metabol Disord. 2003 Dec;3(4):255-62. doi: 10.2174/1568008033340135. Curr Drug Targets Immune Endocr Metabol Disord. 2003. PMID: 14683456 Review.
-
11beta-hydroxysteroid dehydrogenase type 1 and obesity.Front Horm Res. 2008;36:146-164. doi: 10.1159/000115363. Front Horm Res. 2008. PMID: 18230901 Review.
Cited by
-
Inhibition of the mTORC1 pathway alleviates adipose tissue fibrosis.Heliyon. 2023 Nov 4;9(11):e21526. doi: 10.1016/j.heliyon.2023.e21526. eCollection 2023 Nov. Heliyon. 2023. PMID: 38034664 Free PMC article.
-
Mechanisms of liver fibrosis in metabolic syndrome.eGastroenterology. 2023 Jun;1(1):e100015. doi: 10.1136/egastro-2023-100015. eGastroenterology. 2023. PMID: 37946713 Free PMC article.
-
11β-HSD1 inhibition does not affect murine tumour angiogenesis but may exert a selective effect on tumour growth by modulating inflammation and fibrosis.PLoS One. 2023 Mar 20;18(3):e0255709. doi: 10.1371/journal.pone.0255709. eCollection 2023. PLoS One. 2023. PMID: 36940215 Free PMC article.
-
Hypoxia enhances IPF mesenchymal progenitor cell fibrogenicity via the lactate/GPR81/HIF1α pathway.JCI Insight. 2023 Feb 22;8(4):e163820. doi: 10.1172/jci.insight.163820. JCI Insight. 2023. PMID: 36656644 Free PMC article.
-
Inhibition of 11β-hydroxysteroid dehydrogenase 1 relieves fibrosis through depolarizing of hepatic stellate cell in NASH.Cell Death Dis. 2022 Nov 29;13(11):1011. doi: 10.1038/s41419-022-05452-x. Cell Death Dis. 2022. PMID: 36446766 Free PMC article.
References
-
- Hosogai N., Fukuhara A., Oshima K., Miyata Y., Tanaka S., Segawa K., Furukawa S., Tochino Y., Komuro R., Matsuda M., Shimomura I. (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 - PubMed
-
- Rausch M. E., Weisberg S., Vardhana P., Tortoriello D. V. (2008) Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int. J. Obes. (Lon.) 32, 451–463 - PubMed
-
- Pasarica M., Sereda O. R., Redman L. M., Albarado D. C., Hymel D. T., Roan L. E., Rood J. C., Burk D. H., Smith S. R. (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58, 718–725 - PMC - PubMed
-
- Yun Z., Maecker H. L., Johnson R. S., Giaccia A. J. (2002) Inhibition of PPARγ2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev. Cell 2, 331–341 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
