The ecology of 'Acroporid white syndrome', a coral disease from the southern Great Barrier Reef

PLoS One. 2011;6(12):e26829. doi: 10.1371/journal.pone.0026829. Epub 2011 Dec 7.

Abstract

Outbreaks of coral disease have increased worldwide over the last few decades. Despite this, remarkably little is known about the ecology of disease in the Indo-Pacific Region. Here we report the spatiotemporal dynamics of a coral disease termed 'Acroporid white syndrome' observed to affect tabular corals of the genus Acropora on the southern Great Barrier Reef. The syndrome is characterised by rapid tissue loss initiating in the basal margins of colonies, and manifests as a distinct lesion boundary between apparently healthy tissue and exposed white skeleton. Surveys of eight sites around Heron Reef in 2004 revealed a mean prevalence of 8.1±0.9%, affecting the three common species (Acropora cytherea, A. hyacinthus, A. clathrata) and nine other tabular Acropora spp. While all sizes of colonies were affected, white syndrome disproportionately affected larger colonies of tabular Acroporids (>80 cm). The prevalence of white syndrome was strongly related to the abundance of tabular Acroporids within transects, yet the incidence of the syndrome appears unaffected by proximity to other colonies, suggesting that while white syndrome is density dependant, it does not exhibit a strongly aggregated spatial pattern consistent with previous coral disease outbreaks. Acroporid white syndrome was not transmitted by either direct contact in the field or by mucus in aquaria experiments. Monitoring of affected colonies revealed highly variable rates of tissue loss ranging from 0 to 1146 cm(-2) week(-1), amongst the highest documented for a coral disease. Contrary to previous links between temperature and coral disease, rates of tissue loss in affected colonies increased threefold during the winter months. Given the lack of spatial pattern and non-infectious nature of Acroporid white syndrome, further studies are needed to determine causal factors and longer-term implications of disease outbreaks on the Great Barrier Reef.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anthozoa*
  • Australia
  • Ecology
  • Environmental Monitoring
  • Geography
  • Incidence
  • Oceans and Seas
  • Seasons
  • Temperature
  • Time Factors