Genome-wide CpG island profiling of intraductal papillary mucinous neoplasms of the pancreas

Clin Cancer Res. 2012 Feb 1;18(3):700-12. doi: 10.1158/1078-0432.CCR-11-1718. Epub 2011 Dec 15.

Abstract

Purpose: Intraductal papillary mucinous neoplasms (IPMN) are precursors to infiltrating pancreatic ductal adenocarcinomas. Widespread epigenetic alterations are characteristic of many cancers, yet few studies have systematically analyzed epigenetic alterations of neoplastic precursors. Our goal was to conduct genome-wide CpG island methylation profiling to identify aberrantly methylated loci in IPMNs.

Experimental design: We compared the CpG island methylation profiles of six IPMNs to normal primary pancreatic duct samples using methylation CpG island amplification (MCA) and Agilent CpG island microarray (MCAM) analysis. When selected 13 genes identified as differentially methylated by MCAM for methylation-specific PCR (MSP) analysis in an independent set of IPMNs and normal pancreas samples and conducted expression analysis of selected genes.

Results: We identified 2,259 loci as differentially methylated in at least one of six IPMNs including 245 genes hypermethylated in IPMNs with high-grade dysplasia compared with normal pancreatic duct samples. Eleven of 13 genes evaluated by MSP were more commonly methylated in 61 IPMNs than in 43 normal pancreas samples. Several genes (BNIP3, PTCHD2, SOX17, NXPH1, EBF3) were significantly more likely to be methylated in IPMNs with high-grade than with low-grade dysplasia. One gene, SOX17, showed loss of protein expression by immunohistochemistry in 22% (19 of 88) of IPMNs. The most specific marker, BNIP3, was not methylated in any IPMNs with low-grade dysplasia or in normal pancreas samples.

Conclusions: IPMNs undergo extensive aberrant CpG island hypermethylation. The detection of genes selectively methylated in high-grade IPMNs such as BNIP3 may have use in the clinical evaluation of IPMNs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma, Mucinous / genetics*
  • Adenocarcinoma, Mucinous / metabolism
  • Adenocarcinoma, Mucinous / pathology
  • Aged
  • Carcinoma, Pancreatic Ductal / genetics*
  • Carcinoma, Pancreatic Ductal / metabolism
  • Carcinoma, Pancreatic Ductal / pathology
  • Carcinoma, Papillary / genetics*
  • Carcinoma, Papillary / metabolism
  • Carcinoma, Papillary / pathology
  • CpG Islands / genetics*
  • DNA Methylation / genetics
  • Female
  • Genome-Wide Association Study
  • Humans
  • Immunohistochemistry
  • Male
  • Membrane Proteins / genetics*
  • Membrane Proteins / metabolism
  • Middle Aged
  • Oligonucleotide Array Sequence Analysis
  • Pancreatic Neoplasms / genetics*
  • Pancreatic Neoplasms / metabolism
  • Pancreatic Neoplasms / pathology
  • Proto-Oncogene Proteins / genetics*
  • Proto-Oncogene Proteins / metabolism
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • BNIP3 protein, human
  • Membrane Proteins
  • Proto-Oncogene Proteins