Visual map development depends on the temporal pattern of binocular activity in mice
- PMID: 22179110
- PMCID: PMC3267873
- DOI: 10.1038/nn.3007
Visual map development depends on the temporal pattern of binocular activity in mice
Abstract
Binocular competition is thought to drive eye-specific segregation in the developing visual system, potentially through Hebbian synaptic learning rules that are sensitive to correlations in afferent activity. Altering retinal activity can disrupt eye-specific segregation, but little is known about the temporal features of binocular activity that modulate visual map development. We used optogenetic techniques to directly manipulate retinal activity in vivo and identified a critical period before eye opening in mice when specific binocular features of retinal activity drive visual map development. Synchronous activation of both eyes disrupted segregation, whereas asynchronous stimulation enhanced segregation. The optogenetic stimulus applied was spatially homogenous; accordingly, retinotopy of ipsilateral projections was markedly perturbed, but contralateral retinotopy was unaffected or even improved. These results provide direct evidence that the synchrony and precise temporal pattern of binocular retinal activity during a critical period in development regulates eye-specific segregation and retinotopy in the developing visual system.
Figures
Comment in
-
Wiring visual circuits, one eye at a time.Nat Neurosci. 2012 Jan 26;15(2):172-4. doi: 10.1038/nn.3034. Nat Neurosci. 2012. PMID: 22281710 Free PMC article.
Similar articles
-
Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex.J Neurosci. 2014 Feb 19;34(8):2940-55. doi: 10.1523/JNEUROSCI.2640-13.2014. J Neurosci. 2014. PMID: 24553935 Free PMC article.
-
Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits.J Neurosci. 2016 Mar 30;36(13):3871-86. doi: 10.1523/JNEUROSCI.3549-15.2016. J Neurosci. 2016. PMID: 27030771 Free PMC article.
-
Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency.Dev Neurobiol. 2015 Jun;75(6):621-40. doi: 10.1002/dneu.22288. Epub 2015 Mar 30. Dev Neurobiol. 2015. PMID: 25787992 Free PMC article.
-
Plasticity in the tectum of Xenopus laevis: binocular maps.Prog Neurobiol. 1999 Oct;59(2):81-106. doi: 10.1016/s0301-0082(98)00096-3. Prog Neurobiol. 1999. PMID: 10463791 Review.
-
Does dominance of crossing retinal ganglion cells make the eyes cross? The temporal retina in the origin of infantile esotropia – a neuroanatomical and evolutionary analysis.Acta Ophthalmol. 2014 Sep;92(6):e419-23. doi: 10.1111/aos.12289. Acta Ophthalmol. 2014. PMID: 25259397 Free PMC article. Review.
Cited by
-
Competition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculus.J Neurophysiol. 2013 Sep;110(6):1441-54. doi: 10.1152/jn.01066.2012. Epub 2013 Jun 5. J Neurophysiol. 2013. PMID: 23741047 Free PMC article.
-
Caffeine Restores Background EEG Activity Independent of Infarct Reduction after Neonatal Hypoxic Ischemic Brain Injury.Dev Neurosci. 2020;42(1):72-82. doi: 10.1159/000509365. Epub 2020 Aug 18. Dev Neurosci. 2020. PMID: 32810862 Free PMC article.
-
Heterosynaptic plasticity-induced modulation of synapses.J Physiol Sci. 2023 Dec 6;73(1):33. doi: 10.1186/s12576-023-00893-1. J Physiol Sci. 2023. PMID: 38057729 Free PMC article. Review.
-
Synapse elimination and learning rules co-regulated by MHC class I H2-Db.Nature. 2014 May 8;509(7499):195-200. doi: 10.1038/nature13154. Epub 2014 Mar 30. Nature. 2014. PMID: 24695230 Free PMC article.
-
A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice.Elife. 2017 Jun 15;6:e22861. doi: 10.7554/eLife.22861. Elife. 2017. PMID: 28617242 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
- R01 EY015788-09/EY/NEI NIH HHS/United States
- T32 NS007224/NS/NINDS NIH HHS/United States
- P30 EY000785/EY/NEI NIH HHS/United States
- T32 NS007224-26/NS/NINDS NIH HHS/United States
- R01 EY015788-08/EY/NEI NIH HHS/United States
- R01 EY015788-06/EY/NEI NIH HHS/United States
- P30 EY000785-38/EY/NEI NIH HHS/United States
- R01 EY015788-05/EY/NEI NIH HHS/United States
- P30 EY000785-36/EY/NEI NIH HHS/United States
- R01 EY015788S/EY/NEI NIH HHS/United States
- R01 EY015788/EY/NEI NIH HHS/United States
- T32 NS007224-25/NS/NINDS NIH HHS/United States
- P30 EY000785-37/EY/NEI NIH HHS/United States
- P30 EY000785-39/EY/NEI NIH HHS/United States
- R01 EY015788-06S1/EY/NEI NIH HHS/United States
- R01 EY015788-07/EY/NEI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
