Experimental α-particle Radioimmunotherapy of Breast Cancer Using 227Th-labeled p-benzyl-DOTA-trastuzumab

EJNMMI Res. 2011 Aug 24;1(1):18. doi: 10.1186/2191-219X-1-18.


Background: The aim of the present study was to explore the biodistribution, normal tissue toxicity, and therapeutic efficacy of the internalizing low-dose rate alpha-particle-emitting radioimmunoconjugate 227Th-trastuzumab in mice with HER2-expressing breast cancer xenografts.

Methods: Biodistribution of 227Th-trastuzumab and 227Th-rituximab in nude mice bearing SKBR-3 xenografts were determined at different time points after injection. Tumor growth was measured after administration of 227Th-trastuzumab, 227Th-rituximab, cold trastuzumab, and saline. The toxicity of 227Th-trastuzumab was evaluated by measurements of body weight, blood cell, and clinical chemistry parameters, as well as histological examination of tissue specimens.

Results: The tumor uptake reached peak levels of 34% ID/g (4.6 kBq/g) 3 days after injection of 400 kBq/kg of 227Th-trastuzumab. The absorbed radiation dose to tumor was 2.9 Gy, while it was 2.4 Gy to femur due to uptake of the daughter nuclide 223Ra in bone; the latter already explored in clinical phases I and II trials without serious toxicity. A significant dose-dependent antitumor effect was observed for dosages of 200, 400, and 600 kBq/kg of 227Th-trastuzumab but no effect of 400 and 600 kBq/kg 227Th-rituximab (non-tumor binding). No serious delayed bone marrow or normal organ toxicity was observed, but there was a statistical significant reduction in blood cell parameters for the highest-dose group of 227Th-trastuzumab treatment.

Conclusion: Internalizing 227Th-trastuzumab therapy was well tolerated and resulted in a dose-dependent inhibition of breast cancer xenograft growth. These results warrant further preclinical studies aiming at a clinical trial in breast cancer patients with metastases to bone.