Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;49(1-4):315-22.
doi: 10.3233/CH-2011-1482.

Lipid A decreases human erythrocytes deformability by increasing intracellular Ca(2+): effects of verapamil, staurosporine and the rho-kinase inhibitor Y-27632

Affiliations

Lipid A decreases human erythrocytes deformability by increasing intracellular Ca(2+): effects of verapamil, staurosporine and the rho-kinase inhibitor Y-27632

P Ruef et al. Clin Hemorheol Microcirc. 2011.

Abstract

There are several reports demonstrating an involvement of bacterial toxins in the rigidity of red blood cells (RBC). The present study investigates the influence of E. coli F-583-Rd lipid A on RBC deformability under mechanical shear stress. Verapamil (Ca(2+) channel inhibitor), staurosporine (protein kinase inhibitor) and Y-27632 (rho-kinase inhibitor) were used to modify the effect of lipid A on RBC deformability. We also determined if E. coli F-583-Rd Lipid A could induce an increase of intracellular Ca(2+) concentration. For the deformation measurements RBC (10 adult donors) were incubated with E. coli F-583-Rd lipid A (100 μg/ml) and also co-incubated with either verapamil (10(-7) mol/l), staurosporine (10(-7) mol/l) or Y-27632 (10(-7) mol/l). The deformation of the RBC under different shear stresses (0.6-60 Pa) was measured by a shear stress diffractometer (Rheodyne SSD). Intracellular Ca(2+) was determinded by flow cytometry in RBC incubated with Lipid A and labeled with fluorescent Fluo-4/AM which binds intracellular Ca(2+) with high affinity resulting in enhanced green fluorescence intensity. At increasing shear stresses Lipid A induced a significantly lower elongation. Co-incubation of the erythrocytes with verapamil or staurosporine inhibited lipid A induced decrease in elongation while Y-27632 had no effect. Verapamil, Staurosporine and Y-27632 did not influence the elongation response of the cells under control conditions. Lipid A induced a marked increase in fluorescence Fluo-4/AM indicating increased intracellular Ca(2+). These results suggest that E. coli F-583-Rd lipid A is able to influence red blood cell rigidity by a rapid and significant increase of intracellular Ca(2+) concentration. Verapamil and staurosporine abolished the decrease in deformability of Lipid A incubated RBC.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources