Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec 1;17(12):e472-8.

Self-reported health and functional status information improves prediction of inpatient admissions and costs

Affiliations
  • PMID: 22216871
Free article

Self-reported health and functional status information improves prediction of inpatient admissions and costs

Nancy A Perrin et al. Am J Manag Care. .
Free article

Abstract

Objectives: To determine whether adding selfreported health and functional status data to a diagnostic risk-score model explains additional variance in predicting inpatient admissions and costs.

Study design: Retrospective observational analysis.

Methods: We used data from a Health Status Questionnaire (HSQ), completed by 6407 Kaiser Permanente Northwest Medicare patients between December 2006 and October 2008. We used answers from 3 items on the HSQ: (1) General Self-rated Health score, (2) needing help with 1 or more activities of daily living, and (3) having a bothersome health condition. We calculated a DxCG relative risk score from utilization information in the year prior to the survey, using electronic medical records. We compared: (1) DxCG as the sole independent variable and (2) DxCG plus the 3 items as independent variables. We estimated area under the curve (AUC) for each model. Any inpatient admission (yes/no) and being in the top 10% of costs (in the year after survey) were the dependent variables for the first and second logistic regression models, respectively.

Results: The 3 items explained an additional 2.8% and 4.0% of variance for inpatient admissions and top 10% of costs,respectively, in addition to the variance explained by the DxCG score alone. For DxCG alone, the AUC was 0.686 (95% confidence interval [CI] 0.663-0.710) and 0.741 (95% CI 0.719- 0.764), respectively, for inpatient admissions and top 10% of costs and improved to 0.709 (95% CI 0.687-0.730) and 0.770 (95% CI 0.749-0.790) when the 3 self-reported items were added.

Conclusions: Using self-reported health information improved the predictive power of a DxCG model to forecast inpatient admissions and patient cost-tier.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources