[Autism Spectrum Disorder and Genes for Synaptic Proteins]

Brain Nerve. 2012 Jan;64(1):65-70.
[Article in Japanese]

Abstract

Autism spectrum disorder (ASD) is characterized by impaired social interaction and communication, and restricted interests. It is generally accepted that ASD is caused by abnormalities in the structure or functions of the brain. Recent genome-wide analyses have identified copy number variations (CNVs) of neuronal genes in the genomes of ASD patients. CNV is a commonly observed phenomenon in human beings. During the first cell division of meiosis, irregular crossing over between homologous chromosomes results in loss or duplication of a segment. From 2007 to 2010, several groups performed a large-scale virtual screening of CNVs in ASD genomes. Genes affected by CNV, de novo CNVs, and rare CNVs were more prevalent in ASD. The results highlighted the CNVs of many neuronal genes associated with ASD. A fraction of these genes was previously identified in ASD but some were newly identified in each study. The CNVs implicated in ASD include neuronal genes belonging to 4 classes. These genes encode (1) neural adhesion molecules, including cadherins, neuroligin, and neurexin; (2) scaffold proteins such as SHANK3; (3) protein kinases and other intracellular signaling molecules; and (4) proteins that regulate protein syntheses. In general, these proteins play a role in synapse of glutamatergic neurons. The CNVs detected in the ASD patient genomes of imply a link between the synaptic proteins and pathological characteristics of ASD. Altered protein dosage by the CNVs may alter the functional quality of ASD patient's synapses, and may consequently affect their development of language and communication skills. There are 2 types of ASD, one is sporadic and, the other is familial. According to some reports, de novo CNVs are more frequently observed in sporadic-type ASD. However, it is generally understood that a combination of particular CNVs and other possible mutations underlie the pathology of ASD regardless of ASD type. The major symptoms of ASD are often curable with behavioral intervention during early childhood. An early diagnosis, followed by early start of treatment is crucial for language development and communication skills. Further and broader research on genomes will eventually provide information on the biological characteristics of ASD, as well as on specific ASD genotypes, thus aiding in the establishment of optimal treatment and medication to meet the biological conditions of each patient.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Child
  • Child Development Disorders, Pervasive / genetics*
  • DNA Copy Number Variations / genetics
  • Humans
  • Synapses / genetics