Effect of interrepetition rest on power output in the power clean

J Strength Cond Res. 2012 Apr;26(4):883-9. doi: 10.1519/JSC.0b013e3182474370.

Abstract

The effect of interrepetition rest (IRR) periods on power output during performance of multiple sets of power cleans is unknown. It is possible that IRR periods may attenuate the decrease in power output commonly observed within multiple sets. This may be of benefit for maximizing improvements in power with training. This investigation involved 10 college-aged men with proficiency in weightlifting. The subjects performed 3 sets of 6 repetitions of power cleans at 80% of their 1 repetition maximum with 0 (P0), 20 (P20), or 40 seconds (P40) of IRR. Each protocol (P0, P20, P40) was performed in a randomized order on different days each separated by at least 72 hours. The subjects performed the power cleans while standing on a force plate with 2 linear position transducers attached to the bar. Peak power, force, and velocity were obtained for each repetition and set. Peak power significantly decreased by 15.7% during P0 in comparison with a decrease of 5.5% (R1: 4,303 ± 567 W, R6: 4,055 ± 582 W) during P20 and a decrease of 3.3% (R1: 4,549 ± 659 W, R6: 4,363 ± 476 W) during P40. Peak force significantly decreased by 7.3% (R1: 2,861 ± 247 N, R6: 2,657 ± 225 N) during P0 in comparison with a decrease of 2.7% (R1: 2,811 ± 327 N, R6: 2,730 ± 285 N) during P20 and an increase of 0.4% (R1: 2,861 ± 323 N, R6: 2,862 ± 280 N) during P40. Peak velocity significantly decreased by 10.2% (R1: 1.97 ± 0.15 m·s(-1), R6: 1.79 ± 0.11 m·s(-1)) during P0 in comparison with a decrease of 3.8% (R1: 1.89 ± 0.13 m·s(-1), R6: 1.82 ± 0.12 m·s(-1)) during P20 and a decrease of 1.7% (R1: 1.93 ± 0.17 m·s(-1), R6: 1.89 ± 0.14 m·s(-1)) during P40. The results demonstrate that IRR periods allow for the maintenance of power in the power clean during a multiple set exercise protocol and that this may have implications for improved training adaptations.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Adult
  • Humans
  • Male
  • Muscle Strength / physiology
  • Muscle, Skeletal / physiology
  • Rest / physiology
  • Weight Lifting / physiology*
  • Young Adult