CHM/REP1 cDNA delivery by lentiviral vectors provides functional expression of the transgene in the retinal pigment epithelium of choroideremia mice

J Gene Med. 2012 Mar;14(3):158-68. doi: 10.1002/jgm.1652.

Abstract

Background: Choroideremia (CHM) is a progressive X-linked degeneration of three ocular layers: photoreceptors, retinal pigment epithelium (RPE) and choroid, caused by the loss of Rab Escort Protein-1 (REP1). As a recessive monogenic disorder, CHM is potentially curable by gene addition therapy. The present study aimed to evaluate the potential use of lentiviral vectors carrying CHM/REP1 cDNA transgene for CHM treatment.

Methods: We generated lentiviral vectors carrying either CHM/REP1 cDNA or EGFP transgene under the control of the elongation factor-1α promoter (EF-1α) or its shortened version EFS. We transduced human (HT1080) and dog (D17) cells, CHM patient's fibroblasts and mouse primary RPE cells in vitro, as well as wild-type and CHM mouse retinas in vivo by subretinal injections. Transgene expression was confirmed by immunoblotting, fluorescence-activated cell sorting, immunofluorescence and confocal microscopy. CHM/REP1 transgene functionality was assessed by an in vitro prenylation assay.

Results: Lentiviral vectors with CHM/REP1 and EGFP transgenes efficiently transduced HT1080, D17 and CHM fibroblast cells; CHM/REP1 transgene lead to an increase in prenylation activity. Subretinal injections of lentiviral vectors into mouse retinas resulted in efficient transduction of the RPE (30-35% of total RPE cells transduced after a 1-µl injection), long-term expression for at least 6 months and a decrease in amount of unprenylated Rabs in the CHM RPE. Transduction of neuroretinal cells was restricted to the injection site.

Conclusions: Lentiviral CHM/REP1 cDNA transgene rescues the prenylation defect in CHM mouse RPE and thus could be used to restore REP1 activity in the RPE of CHM patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Animals
  • Choroideremia / genetics
  • Choroideremia / metabolism*
  • Choroideremia / therapy*
  • DNA, Complementary / genetics
  • Fibroblasts
  • Genetic Therapy / methods*
  • Genetic Vectors / genetics
  • Lentivirus
  • Mice
  • Retinal Pigment Epithelium / metabolism*
  • Transduction, Genetic

Substances

  • Adaptor Proteins, Signal Transducing
  • CHM protein, human
  • DNA, Complementary