Iron chelation by deferoxamine inhibits lipid peroxidation during cardiopulmonary bypass in humans

Circulation. 1990 Nov;82(5 Suppl):IV390-6.

Abstract

Iron catalysis is involved in oxygen-derived free radical generation and subsequent lipid peroxidation, which have been reported to occur during cardiopulmonary bypass in humans. We assessed the effects of the iron chelator deferoxamine on the susceptibility of circulating low density lipoproteins (LDLs) to induced peroxidation in 20 adult patients (10 controls and 10 treated) undergoing cardiopulmonary bypass for coronary or valve procedures. Deferoxamine was given both intravenously (30 mg/kg body wt, starting 30 minutes before bypass and extending for the next 4 hours) and as an additive to the cardioplegic solution (250 mg/l). Blood samples were taken from both atria before and immediately after the end of cardiopulmonary bypass. Plasma lipid peroxidation was assessed by measuring spectrophotometrically the thiobarbituric acid reactive substances (TBARS) content of selectively isolated LDLs after their exposure to a peroxidizing agent. Before cardiopulmonary bypass, the right and left atrial blood values of LDL-TBARS were not significantly different between the two groups. Cardiopulmonary bypass resulted in a lipid peroxidation of significantly greater magnitude in control than in treated patients. Postbypass right atrial values for LDL-TBARS (expressed in mumol/mmol LDL-phospholipids) were 45.7 +/- 17.2 (mean +/- SEM) in control patients and 6.9 +/- 2.9 in treated patients (p less than 0.02), whereas in the left atrial blood, LDL-TBARS yielded values of 62.7 +/- 20.5 and 10.3 +/- 3.9, respectively (p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Clinical Trial
  • Comparative Study
  • Randomized Controlled Trial

MeSH terms

  • Cardiopulmonary Bypass*
  • Deferoxamine / therapeutic use*
  • Female
  • Free Radicals
  • Humans
  • Iron / metabolism
  • Lipid Peroxidation / drug effects*
  • Lipoproteins, LDL / metabolism
  • Lung / metabolism
  • Male
  • Middle Aged
  • Prospective Studies
  • Reperfusion Injury / etiology
  • Reperfusion Injury / metabolism
  • Reperfusion Injury / prevention & control

Substances

  • Free Radicals
  • Lipoproteins, LDL
  • Iron
  • Deferoxamine