Differential effects of α-tocopherol and N-acetyl-cysteine on advanced glycation end product-induced oxidative damage and neurite degeneration in SH-SY5Y cells

Biochim Biophys Acta. 2012 Apr;1822(4):550-6. doi: 10.1016/j.bbadis.2012.01.003. Epub 2012 Jan 10.


Advanced glycation end products (AGEs) result from non-enzymatic glycation of proteins and cause cellular oxidative stress in a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent manner. Due to these effects, AGEs are implicated as a causal factor in diabetic complications. Several antioxidants, including vitamin E, improve cell viability and diminish markers of oxidative damage in cells exposed to AGEs. However, vitamin E has been studied in cell culture systems with primary focus on apoptosis and lipid peroxidation, while its influences on AGE-induced protein and DNA oxidation, intracellular antioxidant status and cell morphology remain largely unknown. Here, we verify the suppression of AGE-induced cell death and lipid peroxidation by 200μM α-tocopherol in SH-SY5Y cells. We report the partial inhibition of DNA oxidation and a decrease in protein carbonyl formation by α-tocopherol with no effects on intracellular GSH concentrations. We observed that 2mM N-acetyl cysteine (NAC) also had a suppressive effect on DNA and protein oxidation, but unlike α-tocopherol, it caused a marked increase in intracellular GSH. Finally, we compared the ability of both antioxidants to maintain neurites in SH-SY5Y cells and found that α-tocopherol had no effect on neurite loss due to AGEs, while NAC fully maintained cell morphology. Thus, while α-tocopherol suppressed AGE-induced macromolecule damage, it was ineffective against neurite degeneration. These results may implicate thiol oxidation and maintenance as a major regulator of neurite degeneration in this model.

MeSH terms

  • Acetylcysteine / pharmacology*
  • Cell Line
  • Glutathione / metabolism
  • Glycation End Products, Advanced / metabolism*
  • Humans
  • Neurites / pathology*
  • Oxidative Stress*
  • Serum Albumin, Bovine / metabolism
  • alpha-Tocopherol / pharmacology*


  • Glycation End Products, Advanced
  • Serum Albumin, Bovine
  • Glutathione
  • alpha-Tocopherol
  • Acetylcysteine