Functional magnetic resonance imaging study comparing rhythmic finger tapping in children and adults

Pediatr Neurol. 2012 Feb;46(2):94-100. doi: 10.1016/j.pediatrneurol.2011.11.019.

Abstract

This study compared brain activation during unpaced rhythmic finger tapping in 12-year-old children with that of adults. Subjects pressed a button at a pace initially indicated by a metronome (12 consecutive tones), and then continued for 16 seconds of unpaced tapping to provide an assessment of their ability to maintain a steady rhythm. These analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. Twelve adults and 12 children performed this rhythmic finger tapping task in a 3 T scanner. Whole-brain analyses were performed in Brain Voyager, with a random-effects analysis of variance using a general linear model. A dedicated cerebellar atlas was used to localize cerebellar activations. As in adults, unpaced rhythmic finger tapping in children demonstrated activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different, in that adults demonstrated much more deactivation in response to the task, particularly in the occipital and frontal cortices. The other main differences involved the additional recruitment of motor and premotor areas in children compared with adults, and increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who need to recruit the superior vermis more intensively to maintain the rhythm, although they performed somewhat more poorly than adults.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Age Factors
  • Brain / physiology*
  • Brain Mapping
  • Child
  • Female
  • Fingers / physiology*
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Motor Activity / physiology*
  • Movement / physiology*
  • Periodicity
  • Psychomotor Performance / physiology*