Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar 18;743(1-2):1-9.
doi: 10.1016/j.mrgentox.2011.10.017. Epub 2012 Jan 14.

DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide -- elucidation of organ-specificity and the role of oxidative stress

Affiliations

DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide -- elucidation of organ-specificity and the role of oxidative stress

S Guilherme et al. Mutat Res. .

Abstract

Organophosphate herbicides are among the most dangerous agrochemicals for the aquatic environment. In this context, Roundup(®), a glyphosate-based herbicide, has been widely detected in natural water bodies, representing a potential threat to non-target organisms, namely fish. Thus, the main goal of the present study was to evaluate the genotoxic potential of Roundup(®) in the teleost fish Anguilla anguilla, addressing the possible causative involvement of oxidative stress. Fish were exposed to environmentally realistic concentrations of this herbicide (58 and 116 μgL(-1)) during one or three days. The standard procedure of the comet assay was applied to gill and liver cells in order to determine organ-specific genetic damage. Since liver is a central organ in xenobiotic metabolism, nucleoids of hepatic cells were also incubated with a lesion-specific repair enzyme (formamidopyrimidine DNA glycosylase - FPG), in order to recognise oxidised purines. Antioxidants were determined in both organs as indicators of pro-oxidant state. In general, both organs displayed an increase in DNA damage for the two Roundup(®) concentrations and exposure times, although liver showed to be less susceptible to the lower concentration. The enzyme-modified comet assay showed the occurrence of FPG-sensitive sites in liver only after a 3-day exposure to the higher Roundup(®) concentration. The antioxidant defences were in general unresponsive, despite a single increment of catalase activity in gills (116 μgL(-1), 3-day) and a decrease of superoxide dismutase activity in liver (58 μgL(-1), 3-day). Overall, the mechanisms involved in Roundup(®)-induced DNA strand-breaks showed to be similar in both organs. Nevertheless, it was demonstrated that the type of DNA damage varies with the concentration and exposure duration. Hence, after 1-day exposure, an increase on pro-oxidant state is not a necessary condition for the induction of DNA-damaging effects of Roundup(®). By increasing the duration of exposure to three days, ROS-dependent processes gained preponderance as a mechanism of DNA-damage induction in the higher concentration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources