Comparative proteomic analysis of the venom of the taipan snake, Oxyuranus scutellatus, from Papua New Guinea and Australia: role of neurotoxic and procoagulant effects in venom toxicity

J Proteomics. 2012 Apr 3;75(7):2128-40. doi: 10.1016/j.jprot.2012.01.006. Epub 2012 Jan 14.


The venom proteomes of populations of the highly venomous taipan snake, Oxyuranus scutellatus, from Australia and Papua New Guinea (PNG), were characterized by reverse-phase HPLC fractionation, followed by analysis of chromatographic fractions by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. Proteins belonging to the following seven protein families were identified in the two venoms: phospholipase A(2) (PLA(2)), Kunitz-type inhibitor, metalloproteinase (SVMP), three-finger toxin (3FTx), serine proteinase, cysteine-rich secretory proteins (CRISP), and coagulation factor V-like protein. In addition, C-type lectin/lectin-like protein and venom natriuretic peptide were identified in the venom of specimens from PNG. PLA(2)s comprised more than 65% of the venoms of these two populations. Antivenoms generated against the venoms of these populations showed a pattern of cross-neutralization, corroborating the immunological kinship of these venoms. Toxicity experiments performed in mice suggest that, at low venom doses, neurotoxicity leading to respiratory paralysis represents the predominant mechanism of prey immobilization and death. However, at high doses, such as those injected in natural bites, intravascular thrombosis due to the action of the prothrombin activator may constitute a potent and very rapid mechanism for killing prey.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Australia
  • Coagulants / metabolism*
  • Elapid Venoms / metabolism*
  • Elapidae / metabolism*
  • Neurotoxins / metabolism*
  • Papua New Guinea
  • Proteomics / methods*


  • Coagulants
  • Elapid Venoms
  • Neurotoxins