Modeling seasonal variation of hip fracture in Montreal, Canada

Bone. 2012 Apr;50(4):909-16. doi: 10.1016/j.bone.2012.01.004. Epub 2012 Jan 16.

Abstract

The investigation of the association of the climate variables with hip fracture incidences is important in social health issues. This study examined and modeled the seasonal variation of monthly population based hip fracture rate (HFr) time series. The seasonal ARIMA time series modeling approach is used to model monthly HFr incidences time series of female and male patients of the ages 40-74 and 75+ of Montreal, Québec province, Canada, in the period of 1993-2004. The correlation coefficients between meteorological variables such as temperature, snow depth, rainfall depth and day length and HFr are significant. The nonparametric Mann-Kendall test for trend assessment and the nonparametric Levene's test and Wilcoxon's test for checking the difference of HFr before and after change point are also used. The seasonality in HFr indicated sharp difference between winter and summer time. The trend assessment showed decreasing trends in HFr of female and male groups. The nonparametric test also indicated a significant change of the mean HFr. A seasonal ARIMA model was applied for HFr time series without trend and a time trend ARIMA model (TT-ARIMA) was developed and fitted to HFr time series with a significant trend. The multi criteria evaluation showed the adequacy of SARIMA and TT-ARIMA models for modeling seasonal hip fracture time series with and without significant trend. In the time series analysis of HFr of the Montreal region, the effects of the seasonal variation of climate variables on hip fracture are clear. The Seasonal ARIMA model is useful for modeling HFr time series without trend. However, for time series with significant trend, the TT-ARIMA model should be applied for modeling HFr time series.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Female
  • Hip Fractures / epidemiology*
  • Humans
  • Incidence
  • Male
  • Middle Aged
  • Models, Biological*
  • Quebec / epidemiology
  • Seasons*
  • Time Factors