Elastin in large artery stiffness and hypertension

J Cardiovasc Transl Res. 2012 Jun;5(3):264-73. doi: 10.1007/s12265-012-9349-8.


Large artery stiffness, as measured by pulse wave velocity, is correlated with high blood pressure and may be a causative factor in essential hypertension. The extracellular matrix components, specifically the mix of elastin and collagen in the vessel wall, determine the passive mechanical properties of the large arteries. Elastin is organized into elastic fibers in the wall during arterial development in a complex process that requires spatial and temporal coordination of numerous proteins. The elastic fibers last the lifetime of the organism but are subject to proteolytic degradation and chemical alterations that change their mechanical properties. This review discusses how alterations in the amount, assembly, organization, or chemical properties of the elastic fibers affect arterial stiffness and blood pressure. Strategies for encouraging or reversing alterations to the elastic fibers are addressed. Methods for determining the efficacy of these strategies, by measuring elastin amounts and arterial stiffness, are summarized. Therapies that have a direct effect on arterial stiffness through alterations to the elastic fibers in the wall may be an effective treatment for essential hypertension.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Age Factors
  • Animals
  • Antihypertensive Agents / therapeutic use
  • Arteries / drug effects
  • Arteries / metabolism*
  • Arteries / pathology
  • Arteries / physiopathology
  • Blood Pressure
  • Compliance
  • Disease Models, Animal
  • Elastic Tissue / drug effects
  • Elastic Tissue / metabolism*
  • Elastic Tissue / pathology
  • Elastic Tissue / physiopathology
  • Elastin / genetics
  • Elastin / metabolism*
  • Genetic Predisposition to Disease
  • Hemodynamics* / drug effects
  • Humans
  • Hypertension / drug therapy
  • Hypertension / genetics
  • Hypertension / metabolism*
  • Hypertension / pathology
  • Hypertension / physiopathology
  • Mutation
  • Pulsatile Flow
  • Risk Factors


  • Antihypertensive Agents
  • Elastin