Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae)

J Evol Biol. 2012 Apr;25(4):701-15. doi: 10.1111/j.1420-9101.2012.02464.x. Epub 2012 Feb 2.

Abstract

Evolutionary transitions between marine and freshwater biomes are relatively rare events, yielding a widespread pattern of biome conservatism among aquatic organisms. We investigated biome transitions in anchovies (Engraulidae), a globally distributed clade of economically important fishes. Most anchovy species are near-shore marine fishes, but several exclusively freshwater species are known from tropical rivers of South America and were previously thought to be the product of six or more independent freshwater invasions. We generated a comprehensive molecular phylogeny for Engraulidae, including representatives from 15 of 17 currently recognized genera. Our data support previous hypotheses of higher-level relationships within Engraulidae, but show that most New World genera are not monophyletic and in need of revision. Ancestral character reconstruction reveals that New World freshwater anchovies are the product of a single marine to freshwater transition, supporting a pattern of biome conservatism. We argue that competition is the principal mechanism that regulates aquatic biome transitions on a continental scale.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Fishes / classification*
  • Fishes / genetics*
  • Hydrobiology
  • Phylogeography