Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 217 (9), 873-81

Depletion of Ascorbic Acid Impairs NK Cell Activity Against Ovarian Cancer in a Mouse Model

Affiliations

Depletion of Ascorbic Acid Impairs NK Cell Activity Against Ovarian Cancer in a Mouse Model

Jee-Eun Kim et al. Immunobiology.

Abstract

Ascorbic acid (Vitamin C) administration has been used to prevent infectious diseases in public or as a therapeutic agent by the physicians in treatment of several diseases. Ascorbic acid is also involved in immune cell functions and immune responses, although the mechanisms by which it exerts effects on immune cells against cancer cells are not fully understood at the normal plasma level. In this study, we used the mice lacking l-gulono-γ-lactone oxidase (Gulo), the enzyme required for the biosynthesis of ascorbic acid, to characterize the effects of ascorbic acid on NK cell cytotoxicity against ovarian cancer cells, MOSECs (murine ovarian surface epithelial cells). Gulo(-/-) mice depleted of ascorbic acid survived for a shorter time than the normal control or Gulo(-/-) mice supplemented with ascorbic acid after tumor challenge regardless of treatment with IL-2. CD69 and NKG2D expression was clearly reduced in NK cells isolated from mice depleted of ascorbic acid as compared to that in the normal control and the mice supplemented with ascorbic acid. We also observed that IFN-γ secretion by NK cells isolated from Gulo(-/-) mice depleted of ascorbic acid was decreased after NK cells were co-cultured with MOSECs. Furthermore, the mRNA expression of perforin and granzyme B genes was also significantly decreased in NK cells isolated from mice depleted of ascorbic acid. Taken together, our results suggest that ascorbic acid at the normal plasma concentration has an essential role in maintaining the NK cytotoxicity against cancer cells.

Similar articles

See all similar articles

Cited by 9 PubMed Central articles

See all "Cited by" articles

Publication types

MeSH terms

Feedback