Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb;23(2):293-304.
doi: 10.1093/cercor/bhs006. Epub 2012 Feb 7.

Interpyramid spike transmission stabilizes the sparseness of recurrent network activity

Affiliations

Interpyramid spike transmission stabilizes the sparseness of recurrent network activity

Yuji Ikegaya et al. Cereb Cortex. 2013 Feb.

Abstract

Cortical synaptic strengths vary substantially from synapse to synapse and exhibit a skewed distribution with a small fraction of synapses generating extremely large depolarizations. Using multiple whole-cell recordings from rat hippocampal CA3 pyramidal cells, we found that the amplitude of unitary excitatory postsynaptic conductances approximates a lognormal distribution and that in the presence of synaptic background noise, the strongest fraction of synapses could trigger action potentials in postsynaptic neurons even with single presynaptic action potentials, a phenomenon termed interpyramid spike transmission (IpST). The IpST probability reached 80%, depending on the network state. To examine how IpST impacts network dynamics, we simulated a recurrent neural network embedded with a few potent synapses. This network, unlike many classical neural networks, exhibited distinctive behaviors resembling cortical network activity in vivo. These behaviors included the following: 1) infrequent ongoing activity, 2) firing rates of individual neurons approximating a lognormal distribution, 3) asynchronous spikes among neurons, 4) net balance between excitation and inhibition, 5) network activity patterns that was robust against external perturbation, 6) responsiveness even to a single spike of a single excitatory neuron, and 7) precise firing sequences. Thus, IpST captures a surprising number of recent experimental findings in vivo. We propose that an unequally biased distribution with a few select strong synapses helps stabilize sparse neuronal activity, thereby reducing the total spiking cost, enhancing the circuit responsiveness, and ensuring reliable information transfer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources