Structural transitions induced by shear flow and temperature variation in a nonionic surfactant/water system

J Colloid Interface Sci. 2012 Apr 15;372(1):32-9. doi: 10.1016/j.jcis.2012.01.027. Epub 2012 Jan 24.

Abstract

In this study, we investigate structural transitions of tetraethylene glycol monohexadecyl ether (C(16)E(4)) in D(2)O as a function of shear flow and temperature. Via a combination of rheology, rheo-small-angle neutron scattering and rheo-small-angle light scattering, we probe the structural evolution of the system with respect to shear and temperature. Multi-lamellar vesicles, planar lamellae, and a sponge phase were found to compete as a function of shear rate and temperature, with the sponge phase involving the formation of a new transient lamellar phase with a larger spacing, coexisting with the preceding lamellar phase within a narrow temperature-time range. The shear flow behavior of C(16)E(4) is also found to deviate from other nonionic surfactants with shorter alkyl chains (C(10)E(3) and C(12)E(4)), resembling to the C(16)E(7) case, of longer chain.