Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury

Free Radic Biol Med. 2012 Apr 15;52(8):1382-402. doi: 10.1016/j.freeradbiomed.2012.01.013. Epub 2012 Jan 31.


Endothelial cells are covered by a delicate meshwork of glycoproteins known as the glycocalyx. Under normophysiological conditions the glycocalyx plays an active role in maintaining vascular homeostasis by deterring primary and secondary hemostasis and leukocyte adhesion and by regulating vascular permeability and tone. During (micro)vascular oxidative and nitrosative stress, which prevails in numerous metabolic (diabetes), vascular (atherosclerosis, hypertension), and surgical (ischemia/reperfusion injury, trauma) disease states, the glycocalyx is oxidatively and nitrosatively modified and degraded, which culminates in an exacerbation of the underlying pathology. Consequently, glycocalyx degradation due to oxidative/nitrosative stress has far-reaching clinical implications. In this review the molecular mechanisms of reactive oxygen and nitrogen species-induced destruction of the endothelial glycocalyx are addressed in the context of hepatic ischemia/reperfusion injury as a model disease state. Specifically, the review focuses on (i) the mechanisms of glycocalyx degradation during hepatic ischemia/reperfusion, (ii) the molecular and cellular players involved in the degradation process, and (iii) its implications for hepatic pathophysiology. These topics are projected against a background of liver anatomy, glycocalyx function and structure, and the biology/biochemistry and the sources/targets of reactive oxygen and nitrogen species. The majority of the glycocalyx-related mechanisms elucidated for hepatic ischemia/reperfusion are extrapolatable to the other aforementioned disease states.

Publication types

  • Review

MeSH terms

  • Animals
  • Glycocalyx / metabolism*
  • Humans
  • Liver / blood supply*
  • Oxidation-Reduction
  • Reactive Nitrogen Species / metabolism*
  • Reactive Oxygen Species / metabolism*
  • Reperfusion Injury / metabolism*


  • Reactive Nitrogen Species
  • Reactive Oxygen Species