Properties of Ca2+ sparks revealed by four-dimensional confocal imaging of cardiac muscle

J Gen Physiol. 2012 Mar;139(3):189-207. doi: 10.1085/jgp.201110709. Epub 2012 Feb 13.

Abstract

Parameters (amplitude, width, kinetics) of Ca(2+) sparks imaged confocally are affected by errors when the spark source is not in focus. To identify sparks that were in focus, we used fast scanning (LSM 5 LIVE; Carl Zeiss) combined with fast piezoelectric focusing to acquire x-y images in three planes at 1-µm separation (x-y-z-t mode). In 3,000 x-y scans in each of 34 membrane-permeabilized cat atrial cardiomyocytes, 6,906 sparks were detected. 767 sparks were in focus. They had greater amplitude, but their spatial width and rise time were similar compared with all sparks recorded. Their distribution of amplitudes had a mode at ΔF/F(0) = 0.7. The Ca(2+) release current underlying in-focus sparks was 11 pA, requiring 20 to 30 open channels, a number at the high end of earlier estimates. Spark frequency was greater than in earlier imaging studies of permeabilized ventricular cells, suggesting a greater susceptibility to excitation, which could have functional relevance for atrial cells. Ca(2+) release flux peaked earlier than the time of peak fluorescence and then decayed, consistent with significant sarcoplasmic reticulum (SR) depletion. The evolution of fluorescence and release flux were strikingly similar for in-focus sparks of different rise time (T). Spark termination involves both depletion of Ca(2+) in the SR and channel closure, which may be synchronized by depletion. The observation of similar flux in sparks of different T requires either that channel closure and other termination processes be independent of the determinants of flux (including [Ca(2+)](SR)) or that different channel clusters respond to [Ca(2+)](SR) with different sensitivity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials
  • Animals
  • Calcium Channels / metabolism
  • Calcium Signaling / physiology*
  • Cats
  • Image Processing, Computer-Assisted
  • Imaging, Three-Dimensional
  • In Vitro Techniques
  • Microscopy, Confocal
  • Models, Cardiovascular
  • Myocytes, Cardiac / metabolism*
  • Sarcoplasmic Reticulum / metabolism

Substances

  • Calcium Channels