Cross-talk between insulin and Wnt signaling in preadipocytes: role of Wnt co-receptor low density lipoprotein receptor-related protein-5 (LRP5)

J Biol Chem. 2012 Apr 6;287(15):12016-26. doi: 10.1074/jbc.M111.337048. Epub 2012 Feb 15.

Abstract

Disturbed Wnt signaling has been implicated in numerous diseases, including type 2 diabetes and the metabolic syndrome. In the present study, we have investigated cross-talk between insulin and Wnt signaling pathways using preadipocytes with and without knockdown of the Wnt co-receptors LRP5 and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3β, and this is dependent on insulin/IGF-1 receptors. Insulin signaling also involves the Wnt co-receptor LRP5, which has a positive effect on insulin signaling. Thus, altered Wnt and LRP5 activity can serve as modifiers of insulin action and insulin resistance in the pathophysiology of diabetes and metabolic syndrome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3-L1 Cells
  • Adipocytes / metabolism*
  • Animals
  • Gene Expression Regulation
  • Gene Knockdown Techniques
  • Glycogen Synthase Kinase 3 / metabolism
  • Glycogen Synthase Kinase 3 beta
  • Immunoprecipitation
  • Insulin / metabolism
  • Insulin / physiology*
  • Kinetics
  • Low Density Lipoprotein Receptor-Related Protein-5 / genetics
  • Low Density Lipoprotein Receptor-Related Protein-5 / metabolism
  • Low Density Lipoprotein Receptor-Related Protein-5 / physiology*
  • Low Density Lipoprotein Receptor-Related Protein-6 / genetics
  • Low Density Lipoprotein Receptor-Related Protein-6 / metabolism
  • MAP Kinase Signaling System
  • Mice
  • Phosphorylation
  • Protein Binding
  • Proto-Oncogene Proteins c-akt / metabolism
  • RNA Interference
  • Receptor Cross-Talk*
  • Receptor, IGF Type 1 / genetics
  • Receptor, IGF Type 1 / metabolism
  • Receptor, Insulin / genetics
  • Receptor, Insulin / metabolism
  • Wnt Signaling Pathway*
  • Wnt3A Protein / physiology
  • beta Catenin / metabolism

Substances

  • Insulin
  • Low Density Lipoprotein Receptor-Related Protein-5
  • Low Density Lipoprotein Receptor-Related Protein-6
  • Lrp5 protein, mouse
  • Lrp6 protein, mouse
  • Wnt3A Protein
  • Wnt3a protein, mouse
  • beta Catenin
  • Receptor, IGF Type 1
  • Receptor, Insulin
  • Glycogen Synthase Kinase 3 beta
  • Gsk3b protein, mouse
  • Proto-Oncogene Proteins c-akt
  • Glycogen Synthase Kinase 3