Imaging genetics and the neurobiological basis of individual differences in vulnerability to addiction

Drug Alcohol Depend. 2012 Jun:123 Suppl 1:S59-71. doi: 10.1016/j.drugalcdep.2012.01.017. Epub 2012 Feb 16.

Abstract

Background: Addictive disorders are heritable, but the search for candidate functional polymorphisms playing an etiological role in addiction is hindered by complexity of the phenotype and the variety of factors interacting to impact behavior. Advances in human genome sequencing and neuroimaging technology provide an unprecedented opportunity to explore the impact of functional genetic variants on variability in behaviorally relevant neural circuitry. Here, we present a model for merging these technologies to trace the links between genes, brain, and addictive behavior.

Methods: We describe imaging genetics and discuss the utility of its application to addiction. We then review data pertaining to impulsivity and reward circuitry as an example of how genetic variation may lead to variation in behavioral phenotype. Finally, we present preliminary data relating the neural basis of reward processing to individual differences in nicotine dependence.

Results: Complex human behaviors such as addiction can be traced to their basic genetic building blocks by identifying intermediate behavioral phenotypes, associated neural circuitry, and underlying molecular signaling pathways. Impulsivity has been linked with variation in reward-related activation in the ventral striatum (VS), altered dopamine signaling, and functional polymorphisms of DRD2 and DAT1 genes. In smokers, changes in reward-related VS activation induced by smoking abstinence may be associated with severity of nicotine dependence.

Conclusions: Variation in genes related to dopamine signaling may contribute to heterogeneity in VS sensitivity to reward and, ultimately, to addiction. These findings illustrate the utility of the imaging genetics approach for investigating the neurobiological basis for vulnerability to addiction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adult
  • Basal Ganglia / drug effects
  • Behavior, Addictive / genetics*
  • Behavior, Addictive / physiopathology
  • Genetic Variation / physiology*
  • Humans
  • Impulsive Behavior / genetics*
  • Impulsive Behavior / psychology
  • Individuality
  • Male
  • Neural Pathways / physiopathology*
  • Neuroimaging*
  • Phenotype
  • Polymorphism, Genetic / physiology
  • Receptors, Dopamine D2 / genetics*
  • Receptors, Dopamine D2 / physiology
  • Tobacco Use Disorder / genetics*
  • Tobacco Use Disorder / physiopathology

Substances

  • Receptors, Dopamine D2