Conspecific and heterospecific information use in bumblebees

PLoS One. 2012;7(2):e31444. doi: 10.1371/journal.pone.0031444. Epub 2012 Feb 8.


Heterospecific social learning has been understudied in comparison to interactions between members of the same species. However, the learning mechanisms behind such information use can allow animals to be flexible in the cues that are used. This raises the question of whether conspecific cues are inherently more influential than cues provided by heterospecifics, or whether animals can simply use any cue that predicts fitness enhancing conditions, including those provided by heterospecifics. To determine how freely social information travels across species boundaries, we trained bumblebees (Bombus terrestris) to learn to use cues provided by conspecifics and heterospecific honey bees (Apis mellifera) to locate valuable floral resources. We found that heterospecific demonstrators did not differ from conspecifics in the extent to which they guided observers' choices, whereas various types of inorganic visual cues were consistently less effective than conspecifics. This was also true in a transfer test where bees were confronted with a novel flower type. However, in the transfer test, conspecifics were slightly more effective than heterospecific demonstrators. We then repeated the experiment with entirely naïve bees that had never foraged alongside conspecifics before. In this case, heterospecific demonstrators were equally efficient as conspecifics both in the initial learning task and the transfer test. Our findings demonstrate that social learning is not a unique process limited to conspecifics and that through associative learning, interspecifically sourced information can be just as valuable as that provided by conspecific individuals. Furthermore the results of this study highlight potential implications for understanding competition within natural pollinator communities.

MeSH terms

  • Animals
  • Bees
  • Cues*
  • Flowers
  • Information Dissemination
  • Learning*
  • Social Behavior*
  • Species Specificity