FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photooxidation of the primary electron donor

Biochemistry (Mosc). 2012 Feb;77(2):157-64. doi: 10.1134/S000629791202006X.

Abstract

Photochemical oxidation of the primary electron donor P in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (C.) aurantiacus was examined by light-induced Fourier transform infrared (FTIR) difference spectroscopy at 95 K in the spectral range of 4000-1200 cm(-1). The light-induced P(+)Q(A)(-)/PQ(A) IR spectrum of C. aurantiacus RCs is compared to the well-characterized FTIR difference spectrum of P photooxidation in the purple bacterium Rhodobacter (R.) sphaeroides R-26 RCs. The presence in the P(+)Q(A)(-)/PQ(A) FTIR spectrum of C. aurantiacus RCs of specific low-energy electronic transitions at ~2650 and ~2200 cm(-1), as well as of associated vibrational (phase-phonon) bands at 1567, 1481, and 1294-1285 cm(-1), indicates that the radical cation P(+) in these RCs has dimeric structure, with the positive charge distributed between the two coupled bacteriochlorophyll a molecules. The intensity of the P(+) absorbance band at ~1250 nm (upon chemical oxidation of P at room temperature) in C. aurantiacus RCs is approximately 1.5 times lower than that in R. sphaeroides R-26 RCs. This fact, together with the decreased intensity of the absorbance band at ~2650 cm(-1), is interpreted in terms of the weaker coupling of bacteriochlorophylls in the P(+) dimer in C. aurantiacus compared to R. sphaeroides R-26. In accordance with the previous (pre)resonance Raman data, FTIR measurements in the carbonyl stretching region show that in C. aurantiacus RCs (i) the 13(1)-keto C=O groups of P(A) and P(B-) molecules constituting the P dimer are not involved in hydrogen bonding in either neutral or photooxidized state of P and (ii) the 3(1)-acetyl C=O group of P(B) forms a hydrogen bond (probably with tyrosine M187) absorbing at 1635 cm(-1). Differential signals at 1757(+)/1749(-) and 1741(+)/1733(-) cm(-1) in the FTIR spectrum of C. aurantiacus RCs are attributed to the 13(3)-ester C=O groups of P in different environments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chloroflexus / chemistry
  • Chloroflexus / metabolism*
  • Electrons
  • Hydrogen Bonding
  • Light
  • Oxidation-Reduction
  • Photosynthetic Reaction Center Complex Proteins / chemistry*
  • Photosynthetic Reaction Center Complex Proteins / metabolism
  • Rhodobacter sphaeroides / metabolism
  • Spectroscopy, Fourier Transform Infrared*
  • Temperature

Substances

  • Photosynthetic Reaction Center Complex Proteins