Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun;12(3):326-34.
doi: 10.1016/j.coph.2012.01.018. Epub 2012 Feb 18.

TRP channels in normal and dystrophic skeletal muscle

Affiliations
Review

TRP channels in normal and dystrophic skeletal muscle

Philippe Gailly. Curr Opin Pharmacol. 2012 Jun.

Abstract

TRP proteins constitute non-selective cation-permeable ion channels, most of which are permeable to Ca²⁺. In skeletal muscle, several isoforms of the TRPC (Canonical), TRPV (Vanilloid) and TRPM (Melastatin) subfamilies are expressed. In particular, TRPC1, C3 and C6, TRPV2 and V4, TRPM4 and TRPM7 have been consistently found in cultured myoblasts or in adult muscles. These channels seem to directly or indirectly respond to membrane stretch or to Ca²⁺ stores depletion; some isoforms might also constitute unregulated Ca²⁺ leak channels. Their function is largely unknown. TRPC1 and C3 have been involved in muscle development, in particular in myoblasts migration and differentiation. TRPC1 and V4 might allow a basal influx of Ca²⁺ at rest. Their lack has consequences on muscle fatigue. TRPV2 seems to be stretch-sensitive. It localizes mainly in intracellular pools at rest, and translocates to the plasma membrane upon IGF-1 stimulation. TRP channels seem to be involved in the pathophysiology of muscle disorders. In particular in Duchenne muscular dystrophy, the lack of the cytoskeletal protein dystrophin induces a disregulation of several ion channels leading to an abnormal influx of Ca²⁺. We discuss here, the possible involvement of TRP channels in this abnormal influx of Ca²⁺.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances