Information from Searching Content with an Ontology-Utilizing Toolkit (iSCOUT)
- PMID: 22349993
- PMCID: PMC3389089
- DOI: 10.1007/s10278-012-9463-9
Information from Searching Content with an Ontology-Utilizing Toolkit (iSCOUT)
Abstract
Radiology reports are permanent legal documents that serve as official interpretation of imaging tests. Manual analysis of textual information contained in these reports requires significant time and effort. This study describes the development and initial evaluation of a toolkit that enables automated identification of relevant information from within these largely unstructured text reports. We developed and made publicly available a natural language processing toolkit, Information from Searching Content with an Ontology-Utilizing Toolkit (iSCOUT). Core functions are included in the following modules: the Data Loader, Header Extractor, Terminology Interface, Reviewer, and Analyzer. The toolkit enables search for specific terms and retrieval of (radiology) reports containing exact term matches as well as similar or synonymous term matches within the text of the report. The Terminology Interface is the main component of the toolkit. It allows query expansion based on synonyms from a controlled terminology (e.g., RadLex or National Cancer Institute Thesaurus [NCIT]). We evaluated iSCOUT document retrieval of radiology reports that contained liver cysts, and compared precision and recall with and without using NCIT synonyms for query expansion. iSCOUT retrieved radiology reports with documented liver cysts with a precision of 0.92 and recall of 0.96, utilizing NCIT. This recall (i.e., utilizing the Terminology Interface) is significantly better than using each of two search terms alone (0.72, p=0.03 for liver cyst and 0.52, p=0.0002 for hepatic cyst). iSCOUT reliably assembled relevant radiology reports for a cohort of patients with liver cysts with significant improvement in document retrieval when utilizing controlled lexicons.
Figures
Similar articles
-
Retrieval of radiology reports citing critical findings with disease-specific customization.Open Med Inform J. 2012;6:28-35. doi: 10.2174/1874431101206010028. Epub 2012 Aug 10. Open Med Inform J. 2012. PMID: 22934127 Free PMC article.
-
Creating and curating a terminology for radiology: ontology modeling and analysis.J Digit Imaging. 2008 Dec;21(4):355-62. doi: 10.1007/s10278-007-9073-0. Epub 2007 Sep 15. J Digit Imaging. 2008. PMID: 17874267 Free PMC article.
-
Comparing image search behaviour in the ARRS GoldMiner search engine and a clinical PACS/RIS.J Biomed Inform. 2015 Aug;56:57-64. doi: 10.1016/j.jbi.2015.04.013. Epub 2015 May 19. J Biomed Inform. 2015. PMID: 26002820
-
Discerning tumor status from unstructured MRI reports--completeness of information in existing reports and utility of automated natural language processing.J Digit Imaging. 2010 Apr;23(2):119-32. doi: 10.1007/s10278-009-9215-7. Epub 2009 May 30. J Digit Imaging. 2010. PMID: 19484309 Free PMC article. Review.
-
Natural Language Processing in Radiology: A Systematic Review.Radiology. 2016 May;279(2):329-43. doi: 10.1148/radiol.16142770. Radiology. 2016. PMID: 27089187 Review.
Cited by
-
Risk of Malignancy in Incidentally Detected Lung Nodules in Patients Aged Younger Than 35 Years.J Comput Assist Tomogr. 2024 Sep-Oct 01;48(5):770-773. doi: 10.1097/RCT.0000000000001592. Epub 2024 Feb 27. J Comput Assist Tomogr. 2024. PMID: 38438334
-
Integrity of clinical information in radiology reports documenting pulmonary nodules.J Am Med Inform Assoc. 2021 Jan 15;28(1):80-85. doi: 10.1093/jamia/ocaa209. J Am Med Inform Assoc. 2021. PMID: 33094346 Free PMC article.
-
Factors Associated With Optimal Follow-up in Women With BI-RADS 3 Breast Findings.J Am Coll Radiol. 2020 Apr;17(4):469-474. doi: 10.1016/j.jacr.2019.10.003. Epub 2019 Oct 26. J Am Coll Radiol. 2020. PMID: 31669081 Free PMC article.
-
Natural Language Processing for Automated Quantification of Brain Metastases Reported in Free-Text Radiology Reports.JCO Clin Cancer Inform. 2019 Apr;3:1-9. doi: 10.1200/CCI.18.00138. JCO Clin Cancer Inform. 2019. PMID: 31002562 Free PMC article.
-
Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports.J Am Coll Radiol. 2019 Mar;16(3):336-343. doi: 10.1016/j.jacr.2018.10.020. Epub 2018 Dec 29. J Am Coll Radiol. 2019. PMID: 30600162 Free PMC article.
References
-
- Taira RK, Soderland SG, Jakobovits RM. Automatic structuring of radiology free-text reports. Radiographics. 2001;21(1):237–245. - PubMed
-
- Thomas BJ, Ouellette H, Halpern EF, Rosenthal DI. Automated computer-assisted categorization of radiology reports. AJR Am J Roentgenol. 2005;184(2):687–690. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
