The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats

J Physiol. 2012 Apr 1;590(7):1721-36. doi: 10.1113/jphysiol.2011.224931. Epub 2012 Feb 20.


Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture.We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 8-Hydroxy-2-(di-n-propylamino)tetralin / pharmacology
  • Animals
  • Female
  • Foot / innervation
  • Foot / physiology
  • Hindlimb / innervation
  • Hindlimb / physiology
  • Locomotion / drug effects
  • Locomotion / physiology*
  • Neurons, Afferent / physiology
  • Posture / physiology*
  • Quipazine / pharmacology
  • Rats
  • Rats, Wistar
  • Serotonin Agents / pharmacology
  • Spinal Cord Injuries / physiopathology*


  • Serotonin Agents
  • Quipazine
  • 8-Hydroxy-2-(di-n-propylamino)tetralin