A general strategy for the experimental study of the thermochemistry of protic ionic liquids: enthalpy of formation and vaporisation of 1-methylimidazolium ethanoate

Phys Chem Chem Phys. 2012 Apr 7;14(13):4440-6. doi: 10.1039/c2cp40213k. Epub 2012 Feb 24.

Abstract

A general strategy to determine enthalpies of formation of protic ionic liquids, based solely on enthalpy of solution measurements, was conceived and tested for 1-methylimidazolium ethanoate, leading to Δ(f)H°(m){[Hmim][O(2)CCH(3)], 1} = -(425.7 ± 1.2) kJ mol(-1). This result in conjunction with the enthalpy of formation of gaseous 1-methylimidazole (mim) proposed in this work, Δ(f)H°(m)(mim, g) = 126.5 ± 1.1 kJ mol(-1), and Δ(f)H°(m)(CH(3)COOH, g) taken from the literature, allowed the calculation of the enthalpy of the vaporisation process [Hmim][O(2)CCH(3)](l) → mim(g) + CH(3)COOH(g) as Δ(vap)H°(m){[Hmim][O(2)CCH(3)]} = 119.4 ± 3.0 kJ mol(-1). The agreement between this value and Δ(vap)H°(m){[Hmim][O(2)CCH(3)]} = 117.3 ± 0.5 kJ mol(-1), obtained for the direct vaporisation of [Hmim][O(2)CCH(3)], by Calvet-drop microcalorimetry, gives a good indication that, as previously suggested by Fourier transform ion cyclotron resonance mass spectrometry, Raman spectroscopy, and GC-MS experiments, the vaporisation of [Hmim][O(2)CCH(3)] essentially involves a proton transfer mechanism with formation of the two volatile neutral precursor molecules (mim and CH(3)COOH). Although being a low ionicity protic ionic liquid, [Hmim][O(2)CCH(3)] was chosen to validate the methodology proposed here, since its vaporisation mechanism has been unequivocally demonstrated by different methods and for different pressure ranges.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Imidazoles / chemistry*
  • Ionic Liquids / chemistry*
  • Protons*
  • Thermodynamics*
  • Volatilization

Substances

  • Imidazoles
  • Ionic Liquids
  • Protons
  • 1-methylimidazole