Codon usage bias as a function of generation time and life expectancy

Bioinformation. 2012;8(3):158-62. doi: 10.6026/97320630008158. Epub 2012 Feb 3.

Abstract

It has recently been demonstrated that human natural codon usage bias is optimized towards a higher buffering capacity to mutations (measured as the tendency of single point mutations in a DNA sequence to yield the same or similar amino acids) compared to random sequences. In this work, we investigate this phenomenon further by analyzing the natural DNA of four different species (human, mouse, zebrafish and fruit fly) to determine whether such a tolerance to mutations is correlated with the life span and age of sexual maturation for the corresponding organisms. We also propose a new measure to quantify the buffering capacity of a DNA sequence to mutations that takes into account the observed mutation rates within every genome and the effect of the corresponding mutation.Our results suggest there is a propensity for tolerance to mutations that is positively correlated with the life expectancy of the considered organisms. Moreover, random sequences that are constrained to produce the same protein as the naturally occurring sequences are found to be more buffered than completely random sequences while being less buffered than the natural sequences. These results suggest that optimization toward protective mechanisms tolerant to mutations is correlated with both life expectancy and age to sexual maturity at both the levels of codon usage bias and the bias of the natural sequence of codons itself.

Keywords: Buffering capacity; Codon bias; Sequence evolution.