Small non-coding microRNAs (miRNAs) have emerged to play critical roles in cardiovascular biology. Monocytes critically drive atherosclerotic lesion formation, and can be subdivided into a classical and non-classical subset. Here we scrutinised the miRNA signature of human classical and non-classical monocytes, and compared miRNA expression profiles of atherosclerotic plaques from human carotid arteries and healthy arteries. We identified miRNAs to be differentially regulated with a two-fold or higher difference between classical and non-classical monocyte subsets. Moreover, comparing miRNA expression in atherosclerotic plaques compared to healthy arteries, we observed several miRNAs to be aberrantly expressed, with the majority of miRNAs displaying a two-fold or higher increase in plaques and only few miRNAs being decreased. To elucidate similarities in miRNA signatures between monocyte subsets and atherosclerotic plaque, expression of miRNAs highly abundant in monocytes and plaque tissues were compared. Several miRNAs were found in atherosclerotic plaques but not in healthy vessels or either monocyte subset. However, we could identify miRNAs co-expressed in plaque tissue and classical monocytes (miR-99b, miR-152), or non-classical monocytes (miR-422a), or in both monocytes subsets. We thus unravelled candidate miRNAs, which may facilitate our understanding of monocyte recruitment and fate during atherosclerosis, and may serve as therapeutic targets for treating inflammatory vascular diseases.