Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

J Biomol NMR. 2012 Apr;52(4):303-13. doi: 10.1007/s10858-012-9610-0. Epub 2012 Mar 3.

Abstract

A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS(2)) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS(2)-tag is replaced with non-isotope labeled PrS(2)-tag, silencing the NMR signals from PrS(2)-tag in isotope-filtered (1)H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS(2)-tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS(2) (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS(2)-tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS(2)-tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone (1)H, (15)N and (13)C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear (1)H-(15)N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / chemistry
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Isotope Labeling / methods*
  • Models, Molecular
  • Nuclear Magnetic Resonance, Biomolecular / methods*
  • Protein Conformation
  • Protein S / genetics
  • Protein S / metabolism*
  • Proteins / chemistry*
  • Proteins / genetics
  • Proteins / metabolism*
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Ribosomal Proteins / chemistry
  • Ribosomal Proteins / genetics
  • Ribosomal Proteins / metabolism
  • Solubility

Substances

  • Escherichia coli Proteins
  • Protein S
  • Proteins
  • RbfA protein, E coli
  • Recombinant Fusion Proteins
  • Ribosomal Proteins