Receptor signaling clusters in the immune synapse

Annu Rev Biophys. 2012;41:543-56. doi: 10.1146/annurev-biophys-042910-155238. Epub 2012 Feb 23.

Abstract

Signaling processes between various immune cells involve large-scale spatial reorganization of receptors and signaling molecules within the cell-cell junction. These structures, now collectively referred to as immune synapses, interleave physical and mechanical processes with the cascades of chemical reactions that constitute signal transduction systems. Molecular level clustering, spatial exclusion, and long-range directed transport are all emerging as key regulatory mechanisms. The study of these processes is drawing researchers from physical sciences to join the effort and represents a rapidly growing branch of biophysical chemistry. Recent advances in physical and quantitative analyses of signaling within the immune synapses are reviewed here.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Cell Communication*
  • Humans
  • Immune System Phenomena*
  • Intercellular Junctions
  • Lymphocytes / cytology
  • Lymphocytes / immunology
  • Receptors, Immunologic / metabolism*
  • Signal Transduction*

Substances

  • Receptors, Immunologic