Decorrelation and efficient coding by retinal ganglion cells
- PMID: 22406548
- PMCID: PMC3725273
- DOI: 10.1038/nn.3064
Decorrelation and efficient coding by retinal ganglion cells
Abstract
An influential theory of visual processing asserts that retinal center-surround receptive fields remove spatial correlations in the visual world, producing ganglion cell spike trains that are less redundant than the corresponding image pixels. For bright, high-contrast images, this decorrelation would enhance coding efficiency in optic nerve fibers of limited capacity. We tested the central prediction of the theory and found that the spike trains of retinal ganglion cells were indeed decorrelated compared with the visual input. However, most of the decorrelation was accomplished not by the receptive fields, but by nonlinear processing in the retina. We found that a steep response threshold enhanced efficient coding by noisy spike trains and that the effect of this nonlinearity was near optimal in both salamander and macaque retina. These results offer an explanation for the sparseness of retinal spike trains and highlight the importance of treating the full nonlinear character of neural codes.
Figures
Similar articles
-
Nonlinear spatial integration in the receptive field surround of retinal ganglion cells.J Neurosci. 2014 May 28;34(22):7548-61. doi: 10.1523/JNEUROSCI.0413-14.2014. J Neurosci. 2014. PMID: 24872559 Free PMC article.
-
Retinal ganglion cells--spatial organization of the receptive field reduces temporal redundancy.Eur J Neurosci. 2008 Sep;28(5):914-23. doi: 10.1111/j.1460-9568.2008.06394.x. Epub 2008 Aug 8. Eur J Neurosci. 2008. PMID: 18691326 Free PMC article.
-
A test of metabolically efficient coding in the retina.Network. 2002 Nov;13(4):531-52. Network. 2002. PMID: 12463343
-
Information processing in the primate retina: circuitry and coding.Annu Rev Neurosci. 2007;30:1-30. doi: 10.1146/annurev.neuro.30.051606.094252. Annu Rev Neurosci. 2007. PMID: 17335403 Review.
-
Multineuronal codes in retinal signaling.Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):609-14. doi: 10.1073/pnas.93.2.609. Proc Natl Acad Sci U S A. 1996. PMID: 8570603 Free PMC article. Review.
Cited by
-
Fantastic beasts and how to study them: rethinking experimental animal behavior.J Exp Biol. 2024 Feb 15;227(4):jeb247003. doi: 10.1242/jeb.247003. Epub 2024 Feb 19. J Exp Biol. 2024. PMID: 38372042 Free PMC article.
-
From water to land: Evolution of photoreceptor circuits for vision in air.PLoS Biol. 2024 Jan 22;22(1):e3002422. doi: 10.1371/journal.pbio.3002422. eCollection 2024 Jan. PLoS Biol. 2024. PMID: 38252616 Free PMC article.
-
Distinguishing examples while building concepts in hippocampal and artificial networks.Nat Commun. 2024 Jan 20;15(1):647. doi: 10.1038/s41467-024-44877-0. Nat Commun. 2024. PMID: 38245502 Free PMC article.
-
Awake responses suggest inefficient dense coding in the mouse retina.Elife. 2023 Nov 3;12:e78005. doi: 10.7554/eLife.78005. Elife. 2023. PMID: 37922200 Free PMC article.
-
Interpreting the retinal neural code for natural scenes: From computations to neurons.Neuron. 2023 Sep 6;111(17):2742-2755.e4. doi: 10.1016/j.neuron.2023.06.007. Epub 2023 Jul 13. Neuron. 2023. PMID: 37451264 Free PMC article.
References
-
- Attneave F. Some informational aspects of visual perception. Psychol Rev. 1954;61:183–193. - PubMed
-
- Barlow HB. Possible principles underlying the transformation of sensory messages. In: Rosenblith WA, editor. Sensory Communication. MIT Press; Cambridge, MA: 1961. pp. 217–234.
-
- Srinivasan MV, Laughlin SB, Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci. 1982;216:427–459. - PubMed
-
- Atick JJ, Redlich AN. What does the retina know about natural scenes? Neural Comput. 1992;4:196–210.
-
- Atick JJ, Redlich AN. Convergent algorithm for sensory receptive field development. Neural Comput. 1993;5:45–60.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
