Sustained release of PTH(1-34) from PLGA microspheres suppresses osteoarthritis progression in rats

Acta Biomater. 2012 Jul;8(6):2254-62. doi: 10.1016/j.actbio.2012.03.015. Epub 2012 Mar 10.

Abstract

We previously reported that PTH(1-34) inhibits the terminal differentiation of articular chondrocytes and, in turn, suppresses the progression of osteoarthritis (OA). However, this treatment requires an injection of PTH(1-34) once every 3 days over the treatment period. In this study, we studied the effect of sustained administration of PTH(1-34) in a papain-induced OA rat model. We developed an effective controlled-release system for prolonging the treatment duration of an intra-articular injection for OA treatment in rats. The effects of released PTH(1-34) from PLGA(65:35)-encapsulated PTH(1-34) microspheres (PTH/PLGA) on papain-induced OA in rat knees were studied. Microsphere morphology was observed in vitro by scanning electron microscopy, and microsphere size was determined with a particle size analyzer. The PTH(1-34) encapsulation efficiency and release profile, as well as the toxicity of PTH/PLGA, were examined. The bioactivity of released PTH(1-34) was tested by examining cAMP levels in MC3T3E1 cells. In vivo, we evaluated the changes of localized GAG, Col II, and Col X in the articular cartilage of rat knees. Our results demonstrated that the surface of the PLGA microspheres was smooth, and the size of the microspheres was in the range of 51-127 μm. PTH/PLGA microspheres sustainably released PTH(1-34) for 19 days with a concentration range of 0.01-100 nM that covered the expected concentration of 10nM at 37°C. The cAMP levels of MC3T3E1 cells were elevated in the response to released PTH(1-34) from PTH/PLGA microspheres, indicating that the released PTH(1-34) is bioactive. Most importantly, intra-articular treatment with either PTH(1-34) (0.1-100 nM) 3 days/injection or PTH/PLGA microspheres (15 days/injection) for 5 weeks revealed the similar effect on suppressing papain-induced OA changes (decreasing GAG and Col II and increasing Col X) in rat knee cartilage. The effect of PTH/PLGA microspheres on suppressing OA progression was similar to that of a once-every-three-day injection of PTH(1-34), indicating that both the sustained and intermittent action of PTH(1-34) effectively suppress OA progression. The developed PLGA microspheres with sustained release and long-term effect may be potent carriers for PTH(1-34) used to treat early OA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells
  • Animals
  • Disease Progression
  • Drug Carriers*
  • Enzyme-Linked Immunosorbent Assay
  • Immunohistochemistry
  • Male
  • Mice
  • Microscopy, Electron, Scanning
  • Microspheres*
  • Osteoarthritis / drug therapy*
  • Osteoarthritis / pathology
  • Parathyroid Hormone / administration & dosage
  • Parathyroid Hormone / therapeutic use*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Drug Carriers
  • Parathyroid Hormone