Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 23 (9), 2239-56

A Systematic Review of Hip Fracture Incidence and Probability of Fracture Worldwide

Collaborators, Affiliations
Review

A Systematic Review of Hip Fracture Incidence and Probability of Fracture Worldwide

J A Kanis et al. Osteoporos Int.

Abstract

The country-specific risk of hip fracture and the 10-year probability of a major osteoporotic fracture were determined on a worldwide basis from a systematic review of literature. There was a greater than 10-fold variation in hip fracture risk and fracture probability between countries.

Introduction: The present study aimed to update the available information base available on the heterogeneity in the risk of hip fracture on a worldwide basis. An additional aim was to document variations in major fracture probability as determined from the available FRAX models.

Methods: Studies on hip fracture risk were identified from 1950 to November 2011 by a Medline OVID search. Evaluable studies in each country were reviewed for quality and representativeness and a study (studies) chosen to represent that country. Age-specific incidence rates were age-standardised to the world population in 2010 in men, women and both sexes combined. The 10-year probability of a major osteoporotic fracture for a specific clinical scenario was computed in those countries for which a FRAX model was available.

Results: Following quality evaluation, age-standardised rates of hip fracture were available for 63 countries and 45 FRAX models available in 40 countries to determine fracture probability. There was a greater than 10-fold variation in hip fracture risk and fracture probability between countries.

Conclusions: Worldwide, there are marked variations in hip fracture rates and in the 10-year probability of major osteoporotic fractures. The variation is sufficiently large that these cannot be explained by the often multiple sources of error in the ascertainment of cases or the catchment population. Understanding the reasons for this heterogeneity may lead to global strategies for the prevention of fractures.

Figures

Fig. 1
Fig. 1
Age-standardised annual incidence of hip fractures in women (/100,000) according to country together with the colour codes
Fig. 2
Fig. 2
World standardised hip fracture rates (/100,000/year) in men and women
Fig. 3
Fig. 3
Hip fracture rates for men in different countries of the world categorised by risk. Where estimates are available, countries are colour coded red (annual incidence >150/100,000), orange (100–150/100,000) or green (<100/100,000)
Fig. 4
Fig. 4
Hip fracture rates for women in different countries of the world categorised by risk. Where estimates are available, countries are colour coded red (annual incidence >300/100,000), orange (200–300/100,000) or green (<200/100,000)
Fig. 5
Fig. 5
Hip fracture rates for men and women combined in different countries of the world categorised by risk. Where estimates are available, countries are colour coded red (annual incidence >250/100,000), orange (150–250/100,000) or green (<150/100,000)
Fig. 6
Fig. 6
Ten-year probability of a major fracture (in percent) in men and women aged 65 years with a prior fragility fracture (and no other clinical risk factors) at the threshold of osteoporosis as judged by BMD at the femoral neck (i.e. a T-score of −2.5 SD). The body mass index was set at 24 kg/m2
Fig. 7
Fig. 7
Ten year probability of a major osteoporotic fracture for a man aged 65 years with a prior fragility fracture (and no other clinical risk factors) at the threshold of osteoporosis as judged by BMD at the femoral neck (i.e. a T-score of −2.5 SD). Probability in different countries is categorised as high (red, >15%), moderate (orange, 10–15%) and low (green, <10%)
Fig. 8
Fig. 8
Ten-year probability of a major osteoporotic fracture for a woman aged 65 years with a prior fragility fracture (and no other clinical risk factors) at the threshold of osteoporosis as judged by BMD at the femoral neck (i.e. a T-score of −2.5 SD). Probability in different countries is categorised as high (red, >15%), moderate (orange, 10–15%) and low (green, <10%)

Comment in

Similar articles

See all similar articles

Cited by 247 PubMed Central articles

See all "Cited by" articles

References

    1. Ström O, Borgström F, Kanis JA et al (2011) Osteoporosis: burden, health care provision and opportunities in the EU. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. doi:10.1007/s11657-011-0060-1 - PubMed
    1. Johnell O, Kanis JA. An estimate of the world-wide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–1733. doi: 10.1007/s00198-006-0172-4. - DOI - PubMed
    1. Kanis JA on behalf of the World Health Organization Scientific Group (2008) Assessment of osteoporosis at the primary health-care level. Technical Report. WHO Collaborating Centre, University of Sheffield, UK. Available at http://www.shef.ac.uk/FRAX/index.htm
    1. Kanis JA, Johnell O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int. 2005;16:229–238. doi: 10.1007/s00198-004-1811-2. - DOI - PubMed
    1. Cheng SY, Levy AR, Lefaivre KA, Guy P, Kuramoto L, Sobolev B. Geographic trends in incidence of hip fractures: a comprehensive literature review. Osteoporos Int. 2011;22:2575–2586. doi: 10.1007/s00198-011-1596-z. - DOI - PubMed
Feedback