Endometrial carcinoma: molecular alterations involved in tumor development and progression

Oncogene. 2013 Jan 24;32(4):403-13. doi: 10.1038/onc.2012.76. Epub 2012 Mar 19.

Abstract

In the western world, endometrial carcinoma (EC) is the most common cancer of the female genital tract. The annual incidence has been estimated at 10-20 per 100,000 women. Two clinicopathological variants are recognized: the estrogen related (type I, endometrioid) and the non-estrogen related (type II, non-endometrioid).The clinicopathological differences are paralleled by specific genetic alterations, with type I showing microsatellite instability and mutations in phosphatase and tensin homologue deleted on chromosome 10, PIK3CA, K-RAS and CTNNB1 (β-catenin), and type II exhibiting TP53 mutations and chromosomal instability. Some non-endometrioid carcinomas probably arise from pre-existing endometrioid carcinomas as a result of tumor progression and, not surprisingly, some tumors exhibit combined or mixed features at the clinical, pathological and molecular levels. In EC, apoptosis resistance may have a role in tumor progression. Understanding pathogenesis at the molecular level is essential in identifying biomarkers for successful targeted therapies. In this review, the genetic changes of endometrial carcinogenesis are discussed in the light of the morphological features of the tumors and their precursors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Transformation, Neoplastic / genetics*
  • Cell Transformation, Neoplastic / pathology*
  • Disease Progression
  • Endometrial Neoplasms / genetics*
  • Endometrial Neoplasms / pathology*
  • Female
  • Humans