Transient activation of specific neurons in mice by selective expression of the capsaicin receptor

Nat Commun. 2012 Mar 20;3:746. doi: 10.1038/ncomms1749.

Abstract

The ability to control the electrical activity of a neuronal subtype is a valuable tool in deciphering the role of discreet cell populations in complex neural circuits. Recent techniques that allow remote control of neurons are either labor intensive and invasive or indirectly coupled to neural electrical potential with low temporal resolution. Here we show the rapid, reversible and direct activation of genetically identified neuronal subpopulations by generating two inducible transgenic mouse models. Confined expression of the capsaicin receptor, TRPV1, allows cell-specific activation after peripheral or oral delivery of ligand in freely moving mice. Capsaicin-induced activation of dopaminergic or serotonergic neurons reversibly alters both physiological and behavioural responses within minutes, and lasts ~10 min. These models showcase a robust and remotely controllable genetic tool that modulates a distinct cell population without the need for invasive and labour-intensive approaches.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials
  • Animals
  • Capsaicin / metabolism*
  • Capsaicin / pharmacology
  • Dopamine / metabolism
  • Dopaminergic Neurons / physiology*
  • Electric Stimulation
  • Female
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Patch-Clamp Techniques
  • Serotonergic Neurons / physiology*
  • TRPV Cation Channels / genetics*
  • TRPV Cation Channels / metabolism*

Substances

  • TRPV Cation Channels
  • Capsaicin
  • Dopamine