Angiotensin II- and salt-induced kidney injury through Rac1-mediated mineralocorticoid receptor activation

J Am Soc Nephrol. 2012 Jun;23(6):997-1007. doi: 10.1681/ASN.2011070734. Epub 2012 Mar 22.

Abstract

Experiments with hyperaldosteronemic animals suggest that, despite lowering plasma aldosterone, salt worsens renal injury by paradoxical activation of the mineralocorticoid receptor (MR). Salt and aldosterone synergistically contribute to renal impairment through Rac1-mediated activation of the MR, but whether angiotensin II also promotes renal injury through this mechanism is unknown. Here, we placed angiotensin II-overproducing double transgenic Tsukuba hypertensive mice on a low- or high-salt intake for 6 weeks and treated some animals with adrenalectomy, the MR antagonist eplerenone, the Rac inhibitor EHT1864, or hydralazine. High-salt intake, but not low-salt intake, led to hypertension and prominent kidney injury. Adrenalectomy prevented angiotensin II/salt-induced nephropathy in mice receiving high-salt intake, which was recapitulated by aldosterone supplementation, suggesting the involvement of aldosterone/MR signaling. Plasma aldosterone levels, however, were lower in high- than low-salt conditions. Instead, angiotensin II/salt-evoked MR activation associated with Rac1 activation and was not dependent on plasma aldosterone level. Both EHT1864 and eplerenone repressed the augmented MR signaling and mitigated kidney injury with partial but significant reduction in BP with high-salt intake. Hydralazine similarly reduced BP, but it neither suppressed the Rac1-MR pathway nor ameliorated the nephropathy. Taken together, these results show that angiotensin II and salt accelerate kidney injury through Rac1-mediated MR activation. Rac inhibition may be a promising strategy for the treatment of CKD.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Kidney Injury / metabolism*
  • Acute Kidney Injury / pathology*
  • Acute Kidney Injury / physiopathology
  • Adrenalectomy / methods
  • Aldosterone / blood
  • Aldosterone / metabolism*
  • Analysis of Variance
  • Angiotensin II / adverse effects*
  • Angiotensin II / pharmacology
  • Animals
  • Blotting, Western
  • Disease Models, Animal
  • Eplerenone
  • Immunohistochemistry
  • Male
  • Mice
  • Mice, Inbred Strains
  • Random Allocation
  • Real-Time Polymerase Chain Reaction / methods
  • Receptors, Mineralocorticoid / metabolism*
  • Signal Transduction
  • Sodium Chloride, Dietary / adverse effects*
  • Sodium Chloride, Dietary / pharmacology
  • Spironolactone / analogs & derivatives
  • Spironolactone / pharmacology
  • Statistics, Nonparametric
  • rac1 GTP-Binding Protein / genetics
  • rac1 GTP-Binding Protein / metabolism

Substances

  • Receptors, Mineralocorticoid
  • Sodium Chloride, Dietary
  • Angiotensin II
  • Spironolactone
  • Aldosterone
  • Eplerenone
  • rac1 GTP-Binding Protein