Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 4 (3), 351-65

Methane Mitigation in Ruminants: From Microbe to the Farm Scale


Methane Mitigation in Ruminants: From Microbe to the Farm Scale

C Martin et al. Animal.


Decreasing enteric methane (CH4) emissions from ruminants without altering animal production is desirable both as a strategy to reduce global greenhouse gas (GHG) emissions and as a means of improving feed conversion efficiency. The aim of this paper is to provide an update on a selection of proved and potential strategies to mitigate enteric CH4 production by ruminants. Various biotechnologies are currently being explored with mixed results. Approaches to control methanogens through vaccination or the use of bacteriocins highlight the difficulty to modulate the rumen microbial ecosystem durably. The use of probiotics, i.e. acetogens and live yeasts, remains a potentially interesting approach, but results have been either unsatisfactory, not conclusive, or have yet to be confirmed in vivo. Elimination of the rumen protozoa to mitigate methanogenesis is promising, but this option should be carefully evaluated in terms of livestock performances. In addition, on-farm defaunation techniques are not available up to now. Several feed additives such as ionophores, organic acids and plant extracts have also been assayed. The potential use of plant extracts to reduce CH4 is receiving a renewed interest as they are seen as a natural alternative to chemical additives and are well perceived by consumers. The response to tannin- and saponin-containing plant extracts is highly variable and more research is needed to assess the effectiveness and eventual presence of undesirable residues in animal products. Nutritional strategies to mitigate CH4 emissions from ruminants are, without doubt, the most developed and ready to be applied in the field. Approaches presented in this paper involve interventions on the nature and amount of energy-based concentrates and forages, which constitute the main component of diets as well as the use of lipid supplements. The possible selection of animals based on low CH4 production and more likely on their high efficiency of digestive processes is also addressed. Whatever the approach proposed, however, before practical solutions are applied in the field, the sustainability of CH4 suppressing strategies is an important issue that has to be considered. The evaluation of different strategies, in terms of total GHG emissions for a given production system, is discussed.

Similar articles

See all similar articles

Cited by 65 PubMed Central articles

See all "Cited by" articles

LinkOut - more resources