Gold(I) styrylbenzene, distyrylbenzene, and distyrylnaphthalene complexes: high emission quantum yields at room temperature

Chemistry. 2012 May 14;18(20):6316-27. doi: 10.1002/chem.201102502. Epub 2012 Mar 30.

Abstract

One gold(I)-substituted styrylbenzene, six digold(I) distyrylbenzenes, one tetragold distyrylbenzene, and four digold distyrylnaphthalene complexes were synthesized using base-promoted auration, alkynylation, triazolate formation, and Horner-Wadsworth-Emmons reactions. The gold(I) fragments are either σ-bonded to the aromatic system, or they are attached through an alkynyl or triazolate spacer. Product formation was monitored using (31)P{(1)H} NMR spectroscopy. Systems in which gold(I) binds to the central benzene ring or the terminal phenyl rings were designed. All of these complexes have strong ultraviolet absorptions and emit blue light. The position of the gold(I) attachment influences the luminescence efficiency. Complexes with two gold(I) fragments attached to the ends of the conjugated system have fluorescence quantum yields up to 0.94, when using 7-diethylamino-4-methylcoumarin as the emission standard. Density-functional theory calculations on three high-yielding emitters suggest that luminescence originates from the distyrylbenzene or -naphthalene bridge.