Functional identity and functional structure change through succession in a rocky intertidal marine herbivore assemblage

Ecology. 2012 Jan;93(1):75-89. doi: 10.1890/11-0434.1.

Abstract

Despite the great interest in characterizing the functional structure and resilience of functional groups in natural communities, few studies have examined in which way the roles and relationships of coexisting species change during community succession, a fundamental and natural process that follows the release of new resources in terrestrial and aquatic ecosystems. Variation in algal traits that characterize different phases and stages of community succession on rocky shores are likely to influence the magnitude, direction of effects, and the level of redundancy and complementarity in the diverse assemblage of herbivores. Two separate field experiments were conducted to quantify per capita and population effects and the functional relationship (i.e., redundancy or complementarity) of four herbivore species found in central Chile during early and late algal succession. The first experiment examined grazer effects on the colonization and establishment of early-succession algal species. The second experiment examined effects on the late-successional, dominant corticated alga Mazzaella laminarioides. Complementary laboratory experiments with all species and under natural environmental conditions allowed us to further characterize the collective effects of these species. We found that, during early community succession, all herbivore species had similar effects on the ephemeral algae, ulvoids, but only during the phase of colonization. Once these algae were established, only a subset of the species was able to control their abundance. During late succession, only the keyhole limpet Fissurella crassa could control corticated Mazzaella. The functional relationships among these species changed dramatically from redundant effects on ephemeral algae during early colonization, to a more complementary role on established early-successional algae, to a dominant (i.e., keystone) effect on late succession. This study highlights that functional relationship within consumer assemblages can vary at different phases and times of community succession. Differentiation in herbivore roles emphasizes the need to evaluate consumer's impacts through different times of community succession, and through experimental manipulations to make even broad predictions about the resilience or vulnerability of diverse intertidal assemblages to human disturbances.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biodiversity*
  • Biomass
  • Ecosystem*
  • Herbivory / physiology*
  • Population Dynamics
  • Rhodophyta / physiology