Resveratrol inhibits paraquat-induced oxidative stress and fibrogenic response by activating the nuclear factor erythroid 2-related factor 2 pathway

J Pharmacol Exp Ther. 2012 Jul;342(1):81-90. doi: 10.1124/jpet.112.194142. Epub 2012 Apr 4.

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an antioxidant-activated transcription factor that recently emerged as a critical regulator of cellular defense against oxidative and inflammatory lesions. Resveratrol (Res) is a natural phytoalexin that exhibits multiple therapeutic potentials, including antioxidative and anti-inflammatory effects in animals. Paraquat (PQ) is the second most widely used herbicide worldwide, but it selectively accumulates in human lungs to cause oxidative injury and fibrosis with high mortality. Here, we analyzed the molecular mechanism of the fibrogenic response to PQ and its inhibition by Res and Nrf2. PQ dose-dependently caused toxicity in normal human bronchial epithelial cells (BEAS-2B), resulting in mitochondrial damage, oxidative stress, and cell death. Res at 10 μM markedly inhibited PQ toxicity. PQ at 10 μM stimulated production of inflammatory and profibrogenic factors (tumor necrosis factor α, interleukin 6, and transforming growth factor β1) and induced the transformation of normal human lung fibroblasts (WI38-VA13) to myofibroblasts; both effects were inhibited by Res. Res strongly activated the Nrf2 signaling pathway and induced antioxidant response element-dependent cytoprotective genes. On the other hand, knockout or knockdown of Nrf2 markedly increased PQ-induced cytotoxicity, cytokine production, and myofibroblast transformation and abolished protection by Res. The findings demonstrate that Res attenuates PQ-induced reactive oxygen species production, inflammation, and fibrotic reactions by activating Nrf2 signaling. The study reveals a new pathway for molecular intervention against pulmonary oxidative injury and fibrosis.

MeSH terms

  • Animals
  • Antioxidants / metabolism
  • Apoptosis / drug effects
  • Apoptosis / genetics
  • Cell Death / drug effects
  • Cell Death / genetics
  • Cells, Cultured
  • Cytoprotection / drug effects
  • Cytoprotection / genetics
  • Epithelial Cells / drug effects
  • Epithelial Cells / metabolism
  • Fibroblasts / drug effects*
  • Fibroblasts / metabolism
  • Humans
  • Inflammation / drug therapy
  • Inflammation / metabolism
  • Interleukin-6 / genetics
  • Interleukin-6 / metabolism
  • Mice
  • Mice, Knockout
  • Mitochondria / drug effects
  • Mitochondria / genetics
  • Mitochondria / metabolism
  • Myofibroblasts / drug effects
  • Myofibroblasts / metabolism
  • NF-E2-Related Factor 2 / antagonists & inhibitors
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism*
  • Oxidative Stress / drug effects*
  • Oxidative Stress / genetics
  • Paraquat / antagonists & inhibitors*
  • Paraquat / pharmacology
  • Reactive Oxygen Species / metabolism
  • Response Elements / drug effects
  • Response Elements / genetics
  • Resveratrol
  • Signal Transduction / drug effects
  • Signal Transduction / genetics
  • Stilbenes / pharmacology*
  • Transforming Growth Factor beta1 / genetics
  • Transforming Growth Factor beta1 / metabolism
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Antioxidants
  • Interleukin-6
  • NF-E2-Related Factor 2
  • Reactive Oxygen Species
  • Stilbenes
  • Transforming Growth Factor beta1
  • Tumor Necrosis Factor-alpha
  • Paraquat
  • Resveratrol