Further tests of a recombination model in which chi removes the RecD subunit from the RecBCD enzyme of Escherichia coli

Genetics. 1990 Nov;126(3):519-33. doi: 10.1093/genetics/126.3.519.

Abstract

When one of two infecting lambda phage types in a replication-blocked cross is chi + and DNA packaging is divorced from the RecBCD-chi interaction, complementary chi-stimulated recombinants are recovered equally in mass lysates only if the chi + parent is in excess in the infecting parental mixture. Otherwise, the chi 0 recombinant is recovered in excess. This observation implies that, along with the chi 0 chromosome, two chi + parent chromosomes are involved in the formation of each chi + recombinant. The trimolecular nature of chi +-stimulated recombination is manifest in recombination between lambda and a plasmid. When lambda recombines with a plasmid via the RecBCD pathway, the resulting chromosome has an enhanced probability of undergoing lambda x lambda recombination in the interval into which the plasmid was incorporated. These two observations support a model in which DNA is degraded by Exo V from cos, the sequence that determines the end of packaged lambda DNA and acts as point of entry for RecBCD enzyme, to chi, the DNA sequence that stimulates the RecBCD enzyme to effect recombination. The model supposes that chi acts by ejecting the RecD subunit from the RecBCD enzyme with two consequences. (1) ExoV activity is blocked leaving a highly recombinagenic, frayed duplex end near chi, and (2) as the enzyme stripped of the RecD subunit travels beyond chi it is competent to catalyze reciprocal recombination.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Crosses, Genetic
  • Escherichia coli / enzymology
  • Escherichia coli / genetics*
  • Escherichia coli Proteins*
  • Exodeoxyribonuclease V
  • Exodeoxyribonucleases / genetics*
  • Exodeoxyribonucleases / metabolism
  • Models, Genetic*
  • Plasmids
  • Recombination, Genetic*

Substances

  • Escherichia coli Proteins
  • Exodeoxyribonucleases
  • Exodeoxyribonuclease V
  • exodeoxyribonuclease V, E coli