Mechanism of voltage gating in potassium channels
- PMID: 22499946
- DOI: 10.1126/science.1216533
Mechanism of voltage gating in potassium channels
Abstract
The mechanism of ion channel voltage gating-how channels open and close in response to voltage changes-has been debated since Hodgkin and Huxley's seminal discovery that the crux of nerve conduction is ion flow across cellular membranes. Using all-atom molecular dynamics simulations, we show how a voltage-gated potassium channel (KV) switches between activated and deactivated states. On deactivation, pore hydrophobic collapse rapidly halts ion flow. Subsequent voltage-sensing domain (VSD) relaxation, including inward, 15-angstrom S4-helix motion, completes the transition. On activation, outward S4 motion tightens the VSD-pore linker, perturbing linker-S6-helix packing. Fluctuations allow water, then potassium ions, to reenter the pore; linker-S6 repacking stabilizes the open pore. We propose a mechanistic model for the sodium/potassium/calcium voltage-gated ion channel superfamily that reconciles apparently conflicting experimental data.
Similar articles
-
Conformational dynamics of the inner pore helix of voltage-gated potassium channels.J Chem Phys. 2009 Jun 7;130(21):215103. doi: 10.1063/1.3138906. J Chem Phys. 2009. PMID: 19508102
-
Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?Acc Chem Res. 2013 Dec 17;46(12):2755-62. doi: 10.1021/ar300290u. Epub 2013 May 22. Acc Chem Res. 2013. PMID: 23697886 Review.
-
Molecular dynamic simulation of the Kv1.2 voltage-gated potassium channel in open and closed state conformations.J Phys Chem B. 2008 Dec 25;112(51):16966-74. doi: 10.1021/jp807905p. J Phys Chem B. 2008. PMID: 19093881
-
Structure prediction for the down state of a potassium channel voltage sensor.Nature. 2007 Feb 1;445(7127):550-3. doi: 10.1038/nature05494. Epub 2006 Dec 24. Nature. 2007. PMID: 17187053
-
Dissecting the coupling between the voltage sensor and pore domains.Neuron. 2006 Nov 22;52(4):568-9. doi: 10.1016/j.neuron.2006.11.002. Neuron. 2006. PMID: 17114039 Review.
Cited by
-
Computational characterization of structural dynamics underlying function in active membrane transporters.Curr Opin Struct Biol. 2015 Apr;31:96-105. doi: 10.1016/j.sbi.2015.04.001. Epub 2015 Apr 27. Curr Opin Struct Biol. 2015. PMID: 25913536 Free PMC article. Review.
-
Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age.J Physiol. 2015 Jun 15;593(12):2553-73. doi: 10.1113/JP270025. Epub 2015 May 14. J Physiol. 2015. PMID: 25833254 Free PMC article. Review.
-
Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.Chem Rev. 2020 Sep 23;120(18):10298-10335. doi: 10.1021/acs.chemrev.9b00830. Epub 2020 Aug 25. Chem Rev. 2020. PMID: 32841020 Free PMC article. Review.
-
Optimized tight binding between the S1 segment and KCNE3 is required for the constitutively open nature of the KCNQ1-KCNE3 channel complex.Elife. 2022 Nov 4;11:e81683. doi: 10.7554/eLife.81683. Elife. 2022. PMID: 36331187 Free PMC article.
-
Nanopore sensing: A physical-chemical approach.Biochim Biophys Acta Biomembr. 2021 Sep 1;1863(9):183644. doi: 10.1016/j.bbamem.2021.183644. Epub 2021 May 11. Biochim Biophys Acta Biomembr. 2021. PMID: 33989531 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
